2021-05-05 15:22:01 +00:00
|
|
|
import finnhub
|
|
|
|
import time
|
|
|
|
import csv
|
2021-05-05 19:26:56 +00:00
|
|
|
import pytz
|
|
|
|
from datetime import datetime
|
2021-05-07 18:39:42 +00:00
|
|
|
import pyEX
|
2021-05-06 19:59:27 +00:00
|
|
|
import datetime as dt
|
2021-05-08 11:10:05 +00:00
|
|
|
import sys, os, base64, hashlib, hmac
|
|
|
|
import requests
|
2021-05-05 19:26:56 +00:00
|
|
|
|
2021-05-07 18:39:42 +00:00
|
|
|
def readCSV(max_stocks):
|
2021-05-06 19:59:27 +00:00
|
|
|
|
|
|
|
symbols = []
|
|
|
|
stock_info = {}
|
|
|
|
f = open('csv/tickers.csv', 'r')
|
|
|
|
CSV = csv.reader(f)
|
|
|
|
next(CSV)
|
2021-05-07 18:39:42 +00:00
|
|
|
i = 0
|
2021-05-06 19:59:27 +00:00
|
|
|
for row in CSV:
|
2021-05-07 18:39:42 +00:00
|
|
|
if i < max_stocks:
|
|
|
|
i += 1
|
|
|
|
|
|
|
|
try:
|
|
|
|
symbol, current_price, opening_price = row
|
|
|
|
symbols.append(symbol)
|
|
|
|
stock_info[symbol] = [current_price, opening_price]
|
|
|
|
except:
|
|
|
|
symbol = row[0]
|
|
|
|
symbols.append(symbol)
|
|
|
|
stock_info[symbol] = []
|
|
|
|
else:
|
|
|
|
print('max stocks exceeded')
|
|
|
|
break
|
2021-05-06 19:59:27 +00:00
|
|
|
|
|
|
|
f.close()
|
|
|
|
|
|
|
|
return symbols, stock_info
|
|
|
|
|
|
|
|
def emptyInfo(symbols, stock_info):
|
|
|
|
update = False
|
|
|
|
for symbol in symbols:
|
|
|
|
if len(stock_info[symbol]) == 1: # stock with no info
|
|
|
|
update = True
|
|
|
|
return update
|
|
|
|
|
|
|
|
def updateUpdate(NY_time):
|
|
|
|
NY_str = NY_time.strftime("%d/%m/%Y %H:%M:%S")
|
|
|
|
f = open('csv/last_update.csv', 'w+')
|
|
|
|
f.write(NY_str + '\n')
|
|
|
|
f.close()
|
2021-05-05 19:26:56 +00:00
|
|
|
|
2021-05-06 19:59:27 +00:00
|
|
|
def updateStockPrices(symbols):
|
|
|
|
|
|
|
|
|
|
|
|
try:
|
2021-05-08 11:10:05 +00:00
|
|
|
quotes = [finnhubClient.quote(symbol) for symbol in symbols]
|
|
|
|
current_prices = [quote['c'] for quote in quotes]
|
|
|
|
opening_prices = [quote['o'] for quote in quotes]
|
|
|
|
print(current_prices)
|
|
|
|
print(opening_prices)
|
|
|
|
|
|
|
|
|
|
|
|
|
2021-05-06 19:59:27 +00:00
|
|
|
|
2021-05-07 18:39:42 +00:00
|
|
|
|
|
|
|
print(current_prices, opening_prices)
|
2021-05-06 19:59:27 +00:00
|
|
|
CSV = open('csv/tickers.csv', 'w+')
|
|
|
|
CSV.write('name,current,opening\n')
|
|
|
|
for i, symbol in enumerate(symbols):
|
2021-05-07 18:39:42 +00:00
|
|
|
|
2021-05-06 19:59:27 +00:00
|
|
|
CSV.write(symbol + ',' + str(current_prices[i]) + ',' + str(opening_prices[i]) + '\n')
|
|
|
|
CSV.close()
|
|
|
|
|
|
|
|
|
|
|
|
print('API called successfully')
|
|
|
|
|
|
|
|
|
|
|
|
except Exception as e:
|
|
|
|
print("Could not fetch data - API CALLS REACHED? - Will display old image")
|
|
|
|
print(e)
|
|
|
|
apiCalledError = True
|
|
|
|
|
2021-05-08 11:10:05 +00:00
|
|
|
|
|
|
|
def updateStockPricesIEX(symbols):
|
|
|
|
|
|
|
|
symbols_str = ','.join(symbols)
|
|
|
|
method = 'GET'
|
|
|
|
host = 'https://cloud.iexapis.com/stable'
|
|
|
|
lastEndpoint = '/tops/last'
|
|
|
|
querystring = '?symbols=' + symbols_str +'&token='+iexAPIkey
|
|
|
|
|
|
|
|
last_request_url = host + lastEndpoint + querystring
|
|
|
|
|
|
|
|
|
|
|
|
print('\nBEGIN REQUEST++++++++++++++++++++++++++++++++++++')
|
|
|
|
print('Request URL = ' + last_request_url)
|
|
|
|
last_response = requests.get(last_request_url)
|
|
|
|
|
|
|
|
if last_response.status_code == 200:
|
|
|
|
print('last success')
|
|
|
|
|
|
|
|
current_prices = []
|
|
|
|
for stock in last_response.json():
|
|
|
|
current_prices.append(stock['price'])
|
|
|
|
|
|
|
|
|
|
|
|
for symbol in symbols:
|
|
|
|
symbol = 'MSFT'
|
|
|
|
method = 'GET'
|
|
|
|
host = 'https://cloud.iexapis.com/stable'
|
|
|
|
lastEndpoint = '/tops/last'
|
|
|
|
intradayEndpoint = '/stock/'+ symbol+ '/intraday-prices'
|
|
|
|
querystring = '?chartIEXOnly=true&token='+iexAPIkey
|
|
|
|
|
|
|
|
intraday_request_url = host + intradayEndpoint + querystring
|
|
|
|
|
|
|
|
print('\nBEGIN REQUEST++++++++++++++++++++++++++++++++++++')
|
|
|
|
print('Request URL = ' + intraday_request_url)
|
|
|
|
intraday_response = requests.get(intraday_request_url)
|
|
|
|
|
|
|
|
print('\nRESPONSE++++++++++++++++++++++++++++++++++++')
|
|
|
|
print('Response code: %d\n' % intraday_response.status_code)
|
|
|
|
|
|
|
|
|
|
|
|
print(intraday_response.text)
|
|
|
|
|
|
|
|
for time_point in intraday_response.json():
|
|
|
|
print(time_point['date'])
|
|
|
|
print(time_point['open'])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
CSV = open('csv/tickers.csv', 'w+')
|
|
|
|
CSV.write('name,current,opening\n')
|
|
|
|
for i, symbol in enumerate(symbols):
|
|
|
|
|
|
|
|
CSV.write(symbol + ',' + str(current_prices[i]) + ',' + str(opening_prices[i]) + '\n')
|
|
|
|
CSV.close()
|
|
|
|
|
|
|
|
print(lasts)
|
|
|
|
|
2021-05-06 19:59:27 +00:00
|
|
|
if __name__ == '__main__':
|
2021-05-08 11:10:05 +00:00
|
|
|
finnhubAPIkey = "c24qddqad3ickpckgg80" #Finnhub
|
|
|
|
finnhubsandboxAPIkey = "sandbox_c24qddqad3ickpckgg8g" #Finnhub
|
|
|
|
sleeptime = 2 #minutes
|
|
|
|
finnhubClient = finnhub.Client(api_key=finnhubAPIkey)
|
|
|
|
max_stocks = 200
|
2021-05-07 18:39:42 +00:00
|
|
|
|
|
|
|
iexAPIkey = 'pk_68ef6a15902c41f887f0b544a0ca17cf' #IEX
|
|
|
|
iexSandboxAPIkey = 'Tpk_0078dff413ef4f979137f7111452dc4b'
|
|
|
|
|
2021-05-08 11:10:05 +00:00
|
|
|
#updateStockPricesIEX(symbols)
|
|
|
|
|
2021-05-05 19:26:56 +00:00
|
|
|
|
2021-05-08 11:10:05 +00:00
|
|
|
|
|
|
|
finnhubClient = finnhub.Client(api_key=finnhubAPIkey)
|
|
|
|
|
2021-05-06 19:59:27 +00:00
|
|
|
NY_zone = pytz.timezone('America/New_York')
|
2021-05-05 19:26:56 +00:00
|
|
|
|
2021-05-06 19:59:27 +00:00
|
|
|
NY_time = datetime.now(NY_zone)
|
|
|
|
opening = NY_time.replace(hour=9, minute=30, second=0, microsecond=0)
|
|
|
|
closing = NY_time.replace(hour=16, minute=0, second=0, microsecond=0)
|
2021-05-05 19:26:56 +00:00
|
|
|
|
2021-05-06 18:23:17 +00:00
|
|
|
NY_time = datetime.now(NY_zone)
|
|
|
|
|
2021-05-08 11:10:05 +00:00
|
|
|
print(NY_time)
|
|
|
|
|
2021-05-06 19:59:27 +00:00
|
|
|
while True:
|
2021-05-05 15:22:01 +00:00
|
|
|
|
2021-05-08 11:10:05 +00:00
|
|
|
NY_time = datetime.now(NY_zone)
|
2021-05-07 18:39:42 +00:00
|
|
|
symbols, stock_info = readCSV(max_stocks)
|
2021-05-08 11:10:05 +00:00
|
|
|
if opening < NY_time < closing and datetime.today().weekday() < 5: # we need to do real time updating
|
|
|
|
print('market open')
|
|
|
|
|
2021-05-05 15:22:01 +00:00
|
|
|
|
2021-05-08 11:10:05 +00:00
|
|
|
|
2021-05-06 19:59:27 +00:00
|
|
|
updateStockPrices(symbols)
|
|
|
|
updateUpdate(NY_time)
|
|
|
|
|
|
|
|
elif emptyInfo(symbols, stock_info): # if theres any empty stocks
|
2021-05-08 11:10:05 +00:00
|
|
|
|
|
|
|
|
|
|
|
|
2021-05-06 19:59:27 +00:00
|
|
|
updateStockPrices(symbols)
|
|
|
|
updateUpdate(NY_time)
|
|
|
|
else:
|
|
|
|
# update if last update was before the previous days closing
|
2021-05-08 11:10:05 +00:00
|
|
|
|
|
|
|
|
|
|
|
|
2021-05-06 19:59:27 +00:00
|
|
|
f = open('csv/last_update.csv', 'r')
|
|
|
|
CSV = csv.reader(f)
|
|
|
|
last_update_str = next(CSV)[0]
|
|
|
|
print(last_update_str)
|
|
|
|
last_update = datetime.strptime(last_update_str, "%d/%m/%Y %H:%M:%S")
|
2021-05-05 19:26:56 +00:00
|
|
|
|
2021-05-06 19:59:27 +00:00
|
|
|
yday_closing = closing - dt.timedelta(days=1)
|
|
|
|
yday_str = yday_closing.strftime("%d/%m/%Y %H:%M:%S")
|
|
|
|
yday_closing = datetime.strptime(yday_str, "%d/%m/%Y %H:%M:%S")
|
|
|
|
|
|
|
|
|
|
|
|
print(last_update < yday_closing)
|
|
|
|
if last_update < yday_closing:
|
2021-05-08 11:10:05 +00:00
|
|
|
|
2021-05-06 19:59:27 +00:00
|
|
|
updateStockPrices(symbols)
|
2021-05-05 19:26:56 +00:00
|
|
|
|
2021-05-06 19:59:27 +00:00
|
|
|
updateUpdate(NY_time)
|
2021-05-05 19:26:56 +00:00
|
|
|
|
2021-05-05 15:22:01 +00:00
|
|
|
time.sleep(sleeptime*60)
|