fintic-tracker/database_caller.py

2090 lines
109 KiB
Python
Raw Normal View History

# Copyright (C) 2020 Fintic, finticofficial@gmail.com
#
# This file is part of Fintic project, developed by Neythen Treloar and Justin Dunn
#
# This code can not be copied and/or distributed without the express
# permission of Fintic
2023-05-29 16:13:46 +08:00
import random
2023-05-24 19:38:14 +08:00
import pickle
import finnhub
import time
import csv
import pytz
from datetime import datetime, timedelta
2023-01-09 18:13:31 +08:00
import subprocess
import json
2023-01-09 18:13:31 +08:00
import urllib.request
import datetime as dt
import sys, os, base64, hashlib, hmac, select
import requests
from pycoingecko import CoinGeckoAPI
from newsapi import NewsApiClient
import traceback
from geopy import geocoders
2022-02-28 20:16:31 +00:00
from multiprocessing import Process
try:
time.sleep(80)
f = open('csv/last_updates.json', 'r')
last_updates = json.load(f)
f.close()
last_updates['stocks']['force'] = True
2023-03-29 16:46:13 +08:00
last_updates['prepost']['force'] = True
2023-01-09 17:59:07 +08:00
last_updates['sports_l']['force'] = True
2023-08-08 18:30:48 +08:00
last_updates['market']['force'] = True
f = open('csv/last_updates.json', 'w')
json.dump(last_updates, f)
f.close()
except:
pass
2023-04-21 16:46:43 +08:00
try:
f = open('csv/scheduler.json', 'r')
schedules = json.load(f)
f.close()
2023-04-21 19:10:21 +08:00
shutdown_schedule_hour = schedules['shutdown']['hour']
shutdown_schedule_minute = schedules['shutdown']['minute']
reboot_schedule_hour = schedules['reboot']['hour']
reboot_schedule_minute = schedules['reboot']['minute']
2023-04-21 16:46:43 +08:00
timezone = schedules['timezone']
shutdown_enabled = schedules['shutdown']['enabled']
reboot_enabled = schedules['reboot']['enabled']
except:
2023-04-21 19:10:21 +08:00
shutdown_schedule_hour = "00"
shutdown_schedule_minute = "00"
reboot_schedule_hour = "00"
reboot_schedule_minute = "00"
2023-04-21 16:46:43 +08:00
timezone = "GMT"
shutdown_enabled = False
reboot_enabled = False
def getInput(Block=False):
if Block or select.select([sys.stdin], [], [], 0) == ([sys.stdin], [], []):
msg = sys.stdin.read(1)
#sys.stdin.flush()
else:
msg = ''
return msg
def emptyInfo(symbols, stock_info):
update = False
for symbol in symbols:
if stock_info[symbol] == -1: # stock with no info
update = True
return update
def updateUpdate(NY_time):
NY_str = NY_time.strftime("%d/%m/%Y %H:%M:%S")
f = open('csv/last_update.csv', 'w+')
f.write(NY_str + '\n')
f.close()
# def updateStocks(api_key, logf):
# try:
# f = open('csv/stocks_settings.json', 'r')
# all_stocks_settings = json.load(f)
# f.close()
# stock_info = all_stocks_settings['symbols']
# symbols = list(stock_info.keys())
2022-04-07 18:35:38 +01:00
# url = 'https://bm7p954xoh.execute-api.us-east-2.amazonaws.com/default/ScriptsAPI/stocks?symbols='
# for symbol in symbols:
# url += symbol + ','
# url += '&apiKey=' + api_key
# response = requests.get(url)
# data = response.json()
# # stock_info = {}
# if len(data) > 0:
# for symbol in symbols:
# for stock in data:
# if stock['symbol'] == symbol:
# stock_info[stock['symbol']] = {'current': stock['price'], 'change': stock['change_since'], 'percent_change':stock['percent']}
2022-03-05 10:37:22 +00:00
# all_stocks_settings['symbols'] = stock_info
# f = open('csv/stocks_settings.json', 'w+')
# json.dump(all_stocks_settings, f)
# f.close()
# except:
# pass
2022-10-21 17:12:13 +08:00
#logf = open('log.txt', "a")
#exc_type, exc_obj, exc_tb = sys.exc_info()
#fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)[1]
#logf.write(str(e))
#logf.write('. file: ' + fname)
#logf.write('. line: ' + str(exc_tb.tb_lineno))
#logf.write('. type: ' + str(exc_type))
#logf.write('\n ' + "".join(traceback.format_exception(sys.exc_info()[0], sys.exc_info()[1], sys.exc_info()[2])))
#logf.close()
2022-06-13 01:19:14 +08:00
2023-03-29 16:46:13 +08:00
def getCookiesnCrumb():
headers = {'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.7',
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36'}
cookie_url = 'https://finance.yahoo.com'
crumb_url = 'https://query1.finance.yahoo.com/v1/test/getcrumb'
session = requests.Session()
session.get(cookie_url, headers=headers)
crumb = session.get(crumb_url, headers=headers).content.decode('utf-8')
with open('session.txt', 'wb') as f:
pickle.dump(session, f)
with open('crumb.txt', 'w') as f:
f.write(crumb)
2023-03-29 16:46:13 +08:00
2023-08-03 19:23:22 +08:00
def human_format(num):
num = float('{:.3g}'.format(num))
magnitude = 0
while abs(num) >= 1000:
magnitude += 1
num /= 1000.0
return '{}{}'.format('{:f}'.format(num).rstrip('0').rstrip('.'), ['', 'K', 'M', 'B', 'T'][magnitude])
def updateStocks(api_key, logf):
try:
try:
f = open('csv/stocks_settings.json', 'r')
all_stocks_settings = json.load(f)
f.close()
except:
all_stocks_settings = {"feature": "Stocks", "speed": "medium", "speed2": "medium", "animation": "down", "percent": False, "point": True, "logos": True, "chart": False, "title": True, "symbols": {"AAPL": {"current": "164.02", "change": "-1.59", "percent_change": "-0.97"}, "MSFT": {"current": "288.29", "change": "-1.32", "percent_change": "-0.46"}, "GOOG": {"current": "2586.74", "change": "-34.01", "percent_change": "-1.31"}, "NFLX": {"current": "380.52", "change": "-7.59", "percent_change": "-1.99"}}, "prepost": False, "lohivol": False, "display_name": False}
stock_info = all_stocks_settings['symbols']
symbols = list(stock_info.keys())
headers = {'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.7',
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36'}
# url = 'https://bm7p954xoh.execute-api.us-east-2.amazonaws.com/default/ScriptsAPI/stocks?symbols='
2023-09-07 17:54:41 +08:00
url1 = 'https://query1.finance.yahoo.com/v7/finance/quote?fields=longName,regularMarketPrice,regularMarketChangePercent,regularMarketChange,regularMarketDayHigh,regularMarketDayLow,regularMarketVolume&region=US&lang=en-US&symbols='
url2 = 'https://cloud.iexapis.com/v1/stock/market/batch?&types=quote&token=pk_aff870df1a984daa9dd43c71801c1936&symbols='
url = random.choice([url1, url2])
for symbol in symbols:
url += symbol + ','
# url += '&apiKey=' + api_key
if 'cloud.iexapis.com' in url:
response = requests.get(url, headers=headers)
data = response.json()
if len(data) > 0:
for symbol in symbols:
2023-07-24 17:11:04 +08:00
try:
2023-09-07 17:54:41 +08:00
if 'name' in stock_info[data[symbol]['quote']['symbol']] and stock_info[data[symbol]['quote']['symbol']]['name'] != '':
stock_info[data[symbol]['quote']['symbol']] = {'current': str(data[symbol]['quote']['latestPrice']), 'change': str(data[symbol]['quote']['change']), 'percent_change': str(data[symbol]['quote']['changePercent'] * 100), 'day_low': str(data[symbol]['quote']['low']), 'day_high': str(data[symbol]['quote']['high']), 'volume': str(human_format(data[symbol]['quote']['latestVolume'])), 'name': stock_info[data[symbol]['quote']['symbol']]['name']}
else:
2023-09-13 22:49:54 +08:00
stock_info[data[symbol]['quote']['symbol']] = {'current': str(data[symbol]['quote']['latestPrice']), 'change': str(data[symbol]['quote']['change']), 'percent_change': str(data[symbol]['quote']['changePercent'] * 100), 'day_low': str(data[symbol]['quote']['low']), 'day_high': str(data[symbol]['quote']['high']), 'volume': str(human_format(data[symbol]['quote']['latestVolume'])), 'name': data[symbol]['quote']['companyName'].split(' - ')[0].replace('Corp.', 'Corp').replace('Corporation', 'Corp')}
2023-07-24 17:11:04 +08:00
except:
pass
all_stocks_settings['symbols'] = stock_info
with open('csv/stocks_settings.json', 'w+') as f:
json.dump(all_stocks_settings, f)
elif 'query1.finance.yahoo.com/v7' in url:
2023-07-24 17:02:58 +08:00
url = url.replace('BRK.A', 'BRK-A').replace('BRK.B', 'BRK-B')
response = requests.get(url, headers=headers)
data = response.json()
if "'error': {'code'" in str(data):
while True:
try:
with open('session.txt', 'rb') as f:
session = pickle.load(f)
with open('crumb.txt', 'r') as f:
crumb = f.read()
except:
getCookiesnCrumb()
with open('session.txt', 'rb') as f:
session = pickle.load(f)
with open('crumb.txt', 'r') as f:
crumb = f.read()
params = {'crumb': crumb}
data = session.get(url, headers=headers, params=params).json()
if "'error': {'code'" not in str(data):
break
else:
getCookiesnCrumb()
time.sleep(5)
# stock_info = {}
if len(data) > 0:
for symbol in symbols:
2023-07-24 17:11:04 +08:00
try:
for stock in data['quoteResponse']['result']:
2023-09-07 17:54:41 +08:00
if stock['symbol'].replace('BRK-A', 'BRK.A').replace('BRK-B', 'BRK.B') == symbol and 'name' in stock_info[stock['symbol'].replace('BRK-A', 'BRK.A').replace('BRK-B', 'BRK.B')] and stock_info[stock['symbol'].replace('BRK-A', 'BRK.A').replace('BRK-B', 'BRK.B')]['name'] != '':
stock_info[stock['symbol'].replace('BRK-A', 'BRK.A').replace('BRK-B', 'BRK.B')] = {'current': str(stock['regularMarketPrice']), 'change': str(stock['regularMarketChange']), 'percent_change': str(stock['regularMarketChangePercent']), 'day_low': str(stock['regularMarketDayLow']), 'day_high': str(stock['regularMarketDayHigh']), 'volume': str(human_format(stock['regularMarketVolume'])), 'name': stock_info[stock['symbol'].replace('BRK-A', 'BRK.A').replace('BRK-B', 'BRK.B')]['name']}
2023-09-07 18:08:58 +08:00
elif stock['symbol'].replace('BRK-A', 'BRK.A').replace('BRK-B', 'BRK.B') == symbol and 'name' not in stock_info[stock['symbol'].replace('BRK-A', 'BRK.A').replace('BRK-B', 'BRK.B')]:
2023-09-07 18:31:03 +08:00
stock_info[stock['symbol'].replace('BRK-A', 'BRK.A').replace('BRK-B', 'BRK.B')] = {'current': str(stock['regularMarketPrice']), 'change': str(stock['regularMarketChange']), 'percent_change': str(stock['regularMarketChangePercent']), 'day_low': str(stock['regularMarketDayLow']), 'day_high': str(stock['regularMarketDayHigh']), 'volume': str(human_format(stock['regularMarketVolume'])), 'name': stock['longName'].replace(',','').replace('Inc.','Inc').replace('Corporation', 'Corp').replace('Ltd.', 'Ltd').replace('Limited','Ltd')}
2023-07-24 17:11:04 +08:00
except:
pass
all_stocks_settings['symbols'] = stock_info
with open('csv/stocks_settings.json', 'w+') as f:
json.dump(all_stocks_settings, f)
except:
pass
#logf = open('log.txt', "a")
#exc_type, exc_obj, exc_tb = sys.exc_info()
#fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)[1]
#logf.write(str(e))
#logf.write('. file: ' + fname)
#logf.write('. line: ' + str(exc_tb.tb_lineno))
#logf.write('. type: ' + str(exc_type))
#logf.write('\n ' + "".join(traceback.format_exception(sys.exc_info()[0], sys.exc_info()[1], sys.exc_info()[2])))
#logf.close()
2023-03-29 16:46:13 +08:00
def updateStocksPrePost(api_key, logf):
try:
2023-03-29 16:46:13 +08:00
f = open('csv/stocks_settings.json', 'r')
all_stocks_settings = json.load(f)
f.close()
stock_info = all_stocks_settings['symbols']
symbols = list(stock_info.keys())
2023-04-21 00:53:56 +08:00
#KEEP THIS JUST IN CASE V7 GOES DOWN prepost_url = 'https://query2.finance.yahoo.com/v6/finance/quote?symbols='
prepost_url = 'https://query2.finance.yahoo.com/v6/finance/quote?symbols='
2023-03-29 16:46:13 +08:00
for symbol in symbols:
prepost_url += symbol + ','
prepost_url += '&fields=regularMarketPreviousClose,regularMarketPrice,preMarketPrice,preMarketChangePercent,regularMarketChangePercent,regularMarketChange,preMarketChange,postMarketPrice,postMarketChange,postMarketChangePercent&region=US&lang=en-US'
headers = {'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.7',
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36'}
prepost = requests.get(prepost_url.replace('BRK.A', 'BRK-A').replace('BRK.B', 'BRK-B'), headers=headers).json()
if "'error': {'code'" in str(prepost):
while True:
try:
with open('session.txt', 'rb') as f:
session = pickle.load(f)
with open('crumb.txt', 'r') as f:
crumb = f.read()
except:
getCookiesnCrumb()
with open('session.txt', 'rb') as f:
session = pickle.load(f)
with open('crumb.txt', 'r') as f:
crumb = f.read()
params = {'crumb': crumb}
prepost = session.get(prepost_url.replace('v6','v7').replace('BRK.A', 'BRK-A').replace('BRK.B', 'BRK-B'), headers=headers, params=params).json()
if "'error': {'code'" not in str(prepost):
break
else:
getCookiesnCrumb()
time.sleep(5)
prepost_data = prepost['quoteResponse']['result']
2023-03-29 16:46:13 +08:00
time_now = datetime.now(pytz.timezone('America/New_York')).strftime("%H:%M EST")
if len(prepost_data) > 0:
for symbol in symbols:
2023-07-24 17:32:07 +08:00
try:
for stock in prepost_data:
if stock['symbol'] == symbol:
stock_info[stock['symbol']] = {"time_now":time_now}
try:
stock_info[stock['symbol'].replace('BRK-A', 'BRK.A').replace('BRK-B', 'BRK.B')]['Pre-market'] = {'preprice': '%.2f' % stock['preMarketPrice'],
2023-03-29 16:46:13 +08:00
'prechange': '%.2f' % stock['preMarketChange'],
'prepercent': '%.2f' % stock['preMarketChangePercent']}
2023-07-24 17:32:07 +08:00
except:
try:
stock_info[stock['symbol'].replace('BRK-A', 'BRK.A').replace('BRK-B', 'BRK.B')]['Pre-market'] = {'preprice': '%.2f' % stock['postMarketPrice'],
2023-03-29 17:41:33 +08:00
'prechange': '%.2f' % 0,
'prepercent': '%.2f' % 0}
2023-07-24 17:32:07 +08:00
except:
stock_info[stock['symbol'].replace('BRK-A', 'BRK.A').replace('BRK-B', 'BRK.B')]['Pre-market'] = {'preprice': '%.2f' % stock['regularMarketPrice'],
2023-03-29 17:41:33 +08:00
'prechange': '%.2f' % 0,
'prepercent': '%.2f' % 0}
2023-07-24 17:32:07 +08:00
try:
stock_info[stock['symbol'].replace('BRK-A', 'BRK.A').replace('BRK-B', 'BRK.B')]['Post-market'] = {'postprice': '%.2f' % stock['postMarketPrice'],
2023-03-29 16:46:13 +08:00
'postchange': '%.2f' % stock['postMarketChange'],
'postpercent': '%.2f' % stock['postMarketChangePercent']}
2023-07-24 17:32:07 +08:00
except:
stock_info[stock['symbol'].replace('BRK-A', 'BRK.A').replace('BRK-B', 'BRK.B')]['Post-market'] = {'postprice': '%.2f' % stock['regularMarketPrice'],
2023-03-29 16:46:13 +08:00
'postchange': '%.2f' % 0,
'postpercent': '%.2f' % 0}
2023-07-24 17:32:07 +08:00
except:
pass
2023-03-29 16:46:13 +08:00
all_stocks_settings['symbols'] = stock_info
with open('csv/prepost_settings.json', 'w+') as f:
json.dump(all_stocks_settings['symbols'], f)
except:
pass
2022-06-13 01:19:14 +08:00
def updateCommodities(api_key, logf):
try:
try:
f = open('csv/commodities_settings.json', 'r')
all_commodities_settings = json.load(f)
f.close()
except:
all_commodities_settings = {"feature": "Stocks", "speed": "fast", "speed2": "fast", "animation": "down", "percent": True, "point": True, "logos": True, "chart": False, "title": True, "symbols": {"BRENTOIL": {"current": "123.053", "unit": "bbl", "24hr_change": "1.0150", "percent_change": "0.83"}, "WTIOIL": {"current": "121.588", "unit": "bbl", "24hr_change": "0.8902", "percent_change": "0.74"}, "XAU": {"current": "1821.205", "unit": "oz", "24hr_change": "4.0045", "percent_change": "0.22"}, "XAG": {"current": "21.1034", "unit": "oz", "24hr_change": "-0.0550", "percent_change": "-0.26"}, "XCU": {"current": "0.2633", "unit": "oz", "24hr_change": "-0.0006", "percent_change": "-0.22"}, "NG": {"current": "8.6595", "unit": "mmbtu", "24hr_change": "-0.0236", "percent_change": "-0.27"}, "WHEAT": {"current": "393.123", "unit": "ton", "24hr_change": "-1.2642", "percent_change": "-0.32"}, "COTTON": {"current": "1.4494", "unit": "lb", "24hr_change": "0.0004", "percent_change": "0.03"}, "RICE": {"current": "16.3849", "unit": "cwt", "24hr_change": "0.0093", "percent_change": "0.06"}, "SUGAR": {"current": "0.1866", "unit": "lb", "24hr_change": "-0.0007", "percent_change": "-0.40"}, "COCOA": {"current": "2374.074", "unit": "ton", "24hr_change": "2.5206", "percent_change": "0.11"}, "LUMBER": {"current": "527.842", "unit": "oz", "24hr_change": "0.2641", "percent_change": "0.05"}, "SOYBEAN": {"current": "17.1621", "unit": "bu", "24hr_change": "0.0270", "percent_change": "0.16"}}}
2022-06-13 01:19:14 +08:00
commodity_info = all_commodities_settings['symbols']
symbols = list(commodity_info.keys())
2022-06-13 01:19:14 +08:00
url = 'https://bm7p954xoh.execute-api.us-east-2.amazonaws.com/default/ScriptsAPI/commodities?symbols='
for symbol in symbols:
url += symbol + ','
url += '&apiKey=' + api_key
response = requests.get(url)
data = response.json()
commodity_info = {}
if len(data) > 0:
for symbol in symbols:
for commodity in data:
if commodity['symbol'] == symbol:
commodity_info[commodity['symbol']] = {'current': commodity['price'], 'unit': commodity['unit'], '24hr_change': commodity['price_over_24hr'], 'percent_change': commodity['percent_over_24hr']}
all_commodities_settings['symbols'] = commodity_info
with open('csv/commodities_settings.json', 'w+') as f:
json.dump(all_commodities_settings, f)
2022-06-13 01:19:14 +08:00
2022-10-21 17:12:13 +08:00
except:
pass
#logf = open('log.txt', "a")
#exc_type, exc_obj, exc_tb = sys.exc_info()
#fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)[1]
#logf.write(str(e))
#logf.write('. file: ' + fname)
#logf.write('. line: ' + str(exc_tb.tb_lineno))
#logf.write('. type: ' + str(exc_type))
#logf.write('\n ' + "".join(traceback.format_exception(sys.exc_info()[0], sys.exc_info()[1], sys.exc_info()[2])))
#logf.close()
2022-10-06 13:00:59 +08:00
2023-02-23 13:18:00 +08:00
2023-01-09 16:23:25 +08:00
def updateMovies(api_key, logf):
try:
f = open('csv/movie_settings.json', 'r')
all_settings = json.load(f)
f.close()
except:
all_settings = {"feature": "Movies", "speed": "fast", "speed2": "fast", "animation": "continuous", "category": "Popular All", "title": True, "movies": [{"title": "Avatar: The Way of Water", "language": "EN", "votes": "8.1", "date": "2022-12-14", "media_type": "Movie", "genre": ["Sci-Fi", "Action", "Adventure"], "backdrop": "198vrF8k7mfQ4FjDJsBmdQcaiyq.jpg", "logo": "https://image.tmdb.org/t/p/w500/198vrF8k7mfQ4FjDJsBmdQcaiyq.jpg"}, {"title": "Violent Night", "language": "EN", "votes": "7.3", "date": "2022-11-30", "media_type": "Movie", "genre": ["Action", "Comedy", "Crime", "Thriller"], "backdrop": "g9Kb3RaLjsybI1jpqHQ3QZTCYpB.jpg", "logo": "https://image.tmdb.org/t/p/w500/g9Kb3RaLjsybI1jpqHQ3QZTCYpB.jpg"}, {"title": "Avatar", "language": "EN", "votes": "7.5", "date": "2009-12-15", "media_type": "Movie", "genre": ["Action", "Adventure", "Fantasy", "Sci-Fi"], "backdrop": "Yc9q6QuWrMp9nuDm5R8ExNqbEq.jpg", "logo": "https://image.tmdb.org/t/p/w500/Yc9q6QuWrMp9nuDm5R8ExNqbEq.jpg"}, {"title": "The Banshees of Inisherin", "language": "EN", "votes": "7.7", "date": "2022-10-21", "media_type": "Movie", "genre": ["Drama", "Comedy"], "backdrop": "9Md4CqzUGDtK5oEkRRvozLkGc9d.jpg", "logo": "https://image.tmdb.org/t/p/w500/9Md4CqzUGDtK5oEkRRvozLkGc9d.jpg"}, {"title": "Wednesday", "language": "EN", "votes": "8.8", "date": "2022-11-23", "media_type": "Tv", "genre": ["Sci-Fi & Fantasy", "Mystery", "Comedy"], "backdrop": "iHSwvRVsRyxpX7FE7GbviaDvgGZ.jpg", "logo": "https://image.tmdb.org/t/p/w500/iHSwvRVsRyxpX7FE7GbviaDvgGZ.jpg"}, {"title": "1923", "language": "EN", "votes": "8.8", "date": "2022-12-18", "media_type": "Tv", "genre": ["Drama", "Western"], "backdrop": "9I6LgZ5110ycg4pyobJxGTFWFCF.jpg", "logo": "https://image.tmdb.org/t/p/w500/9I6LgZ5110ycg4pyobJxGTFWFCF.jpg"}, {"title": "The Recruit", "language": "EN", "votes": "7.2", "date": "2022-12-16", "media_type": "Tv", "genre": ["Drama", "Crime"], "backdrop": "rey2eh6752C2UbGYRileKk1PVTo.jpg", "logo": "https://image.tmdb.org/t/p/w500/rey2eh6752C2UbGYRileKk1PVTo.jpg"}, {"title": "Black Adam", "language": "EN", "votes": "7.2", "date": "2022-10-19", "media_type": "Movie", "genre": ["Action", "Fantasy", "Sci-Fi"], "backdrop": "bQXAqRx2Fgc46uCVWgoPz5L5Dtr.jpg", "logo": "https://image.tmdb.org/t/p/w500/bQXAqRx2Fgc46uCVWgoPz5L5Dtr.jpg"}, {"title": "Nanny", "language": "EN", "votes": "5.4", "date": "2022-11-23", "media_type": "Movie", "genre": ["Horror", "Drama"], "backdrop": "nfuPlOK6ywGzKGb0yf7VJKyTFWb.jpg", "logo": "https://image.tmdb.org/t/p/w500/nfuPlOK6ywGzKGb0yf7VJKyTFWb.jpg"}, {"title": "Tom Clancys Jack Ryan", "language": "EN", "votes": "7.7", "date": "2018-08-30", "media_type": "Tv", "genre": ["Action & Adventure", "Drama", "War & Politics"], "backdrop": "6ovk8nrrSmN1ieT14zBAxcHbMU7.jpg", "logo": "https://image.tmdb.org/t/p/w500/6ovk8nrrSmN1ieT14zBAxcHbMU7.jpg"}, {"title": "High Heat", "language": "EN", "votes": "6.5", "date": "2022-12-16", "media_type": "Movie", "genre": ["Action", "Comedy", "Crime"], "backdrop": "gjNM0odqkq5F7V58OjfTxPJ9p9Z.jpg", "logo": "https://image.tmdb.org/t/p/w500/gjNM0odqkq5F7V58OjfTxPJ9p9Z.jpg"}, {"title": "A Not So Merry Christmas", "language": "ES", "votes": "4.8", "date": "2022-12-20", "media_type": "Movie", "genre": ["Comedy"], "backdrop": "8uyJzaiGbiezZ9K48Cy5wXeqnYw.jpg", "logo": "https://image.tmdb.org/t/p/w500/8uyJzaiGbiezZ9K48Cy5wXeqnYw.jpg"}, {"title": "Guillermo del Toros Pinocchio", "language": "EN", "votes": "8.5", "date": "2022-11-09", "media_type": "Movie", "genre": ["Animation", "Fantasy", "Drama"], "backdrop": "e782pDRAlu4BG0ahd777n8zfPzZ.jpg", "logo": "https://image.tmdb.org/t/p/w500/e782pDRAlu4BG0ahd777n8zfPzZ.jpg"}, {"title": "His Dark Materials", "language": "EN", "votes": "8.0", "date": "2019-11-03", "media_type": "Tv", "genre": ["Sci-Fi & Fantasy", "Drama"], "backdrop": "dGOhplPZTL0SKyb0ocTFBHIuKUC.jpg", "logo": "https://image.tmdb.org/t/p/w500/dGOhplPZTL0SKyb0ocTFBHIuKUC.jpg"}, {"title": "The Fabelmans", "language": "EN", "votes": "7.8", "date": "2022-11-11", "media_type": "Movie", "genre": ["Drama", "Comedy"], "backdrop": "6
2023-01-09 16:23:25 +08:00
if all_settings['category'] == 'Popular Movies':
url = 'https://api.themoviedb.org/3/trending/movie/day?'
movieGenre_url = 'https://api.themoviedb.org/3/genre/movie/list?api_key=' + api_key + '&language=en-US'
movieGenre_response = requests.get(movieGenre_url)
movie_genres = movieGenre_response.json()
elif all_settings['category'] == 'Popular TV':
url = 'https://api.themoviedb.org/3/trending/tv/day?'
tvGenre_url = 'https://api.themoviedb.org/3/genre/tv/list?api_key=' + api_key + '&language=en-US'
tvGenre_response = requests.get(tvGenre_url)
tv_genres = tvGenre_response.json()
elif all_settings['category'] == 'Popular All':
url = 'https://api.themoviedb.org/3/trending/all/day?'
movieGenre_url = 'https://api.themoviedb.org/3/genre/movie/list?api_key=' + api_key + '&language=en-US'
movieGenre_response = requests.get(movieGenre_url)
movie_genres = movieGenre_response.json()
tvGenre_url = 'https://api.themoviedb.org/3/genre/tv/list?api_key=' + api_key + '&language=en-US'
tvGenre_response = requests.get(tvGenre_url)
tv_genres = tvGenre_response.json()
url += 'api_key=' + api_key
response = requests.get(url)
data = response.json()
this_out = []
logo_files = []
if len(data) > 0:
movies = data['results']
for movie in movies:
2023-02-23 13:18:00 +08:00
if movie['media_type'] == 'movie':
movie_id = movie['id']
box_office_url = 'https://api.themoviedb.org/3/movie/' + str(movie_id) + '?api_key=' + api_key
box_office_response = requests.get(box_office_url)
box_office_data = box_office_response.json()
budget = human_format(box_office_data['budget'])
revenue = human_format(box_office_data['revenue'])
else:
budget = '0'
revenue = '0'
2023-01-09 16:23:25 +08:00
movie_language = movie['original_language']
movie_votes = movie['vote_average']
movie_votes = "{:.1f}".format(movie_votes)
try:
movie_titles = movie['title']
movie_date = movie['release_date']
except KeyError:
movie_titles = movie['name']
movie_date = movie['first_air_date']
movie_type = movie['media_type']
movie_genre = movie['genre_ids']
movie_logo = 'https://image.tmdb.org/t/p/w500' + movie['backdrop_path']
genrefinal = []
if all_settings['category'] == 'Popular Movies':
for i in movie_genre:
for genre in movie_genres['genres']:
if genre['name'] == 'Science Fiction':
genre['name'] = 'Sci-Fi'
if i == genre['id']:
i = genre['name']
genrefinal.append(i)
elif all_settings['category'] == 'Popular TV':
for i in movie_genre:
for genre in tv_genres['genres']:
if i == genre['id']:
i = genre['name']
genrefinal.append(i)
elif all_settings['category'] == 'Popular All':
if movie['media_type'] == 'movie':
for i in movie_genre:
for genre in movie_genres['genres']:
if genre['name'] == 'Science Fiction':
genre['name'] = 'Sci-Fi'
if i == genre['id']:
i = genre['name']
genrefinal.append(i)
elif movie['media_type'] == 'tv':
for i in movie_genre:
for genre in tv_genres['genres']:
if i == genre['id']:
i = genre['name']
genrefinal.append(i)
this_out.append({'title':movie_titles,
'language':movie_language.upper(),
'votes':str(movie_votes),
'date':movie_date,
'media_type':movie_type.capitalize(),
'genre':genrefinal,
2023-02-23 13:18:00 +08:00
'budget':budget,
'revenue':revenue,
2023-01-09 16:23:25 +08:00
'backdrop':movie['backdrop_path'][1:],
'logo': movie_logo
})
logo_files.append(movie['backdrop_path'][1:])
2023-02-23 13:18:00 +08:00
if movie['backdrop_path'][1:] not in os.listdir('logos/movies/'):
urllib.request.urlretrieve(movie_logo,'logos/movies/' + movie['backdrop_path'])
time.sleep(0.5)
2023-01-09 16:23:25 +08:00
for file in os.listdir('logos/movies/'):
if file not in logo_files:
os.remove('logos/movies/'+file)
all_settings['movies'] = this_out
with open('csv/movie_settings.json', 'w+') as f:
json.dump(all_settings, f)
2023-03-08 15:30:17 +08:00
def updateIpo(api_key, logf):
day = datetime.now(pytz.utc).strftime("%Y-%m-%d")
dt = datetime.strptime(day, "%Y-%m-%d")
start = (dt - timedelta(days=dt.weekday()))
start_date = start.strftime("%Y-%m-%d")
end = start + timedelta(days=21)
end_date = end.strftime("%Y-%m-%d")
ipo_url = 'https://finnhub.io/api/v1/calendar/ipo?from='+start_date+'&to='+end_date+'&token='+api_key
try:
f = open('csv/ipo_settings.json', 'r')
ipo_settings = json.load(f)
f.close()
except:
ipo_settings = {"feature": "IPO", "speed": "medium", "speed2": "medium", "animation": "down", "title": True, "symbols": ["No Data"]}
2023-03-08 15:30:17 +08:00
data = requests.get(ipo_url)
all_ipo = data.json()
ipo_list = []
2023-03-08 15:47:31 +08:00
try:
if len(all_ipo['ipoCalendar']) > 0:
for ipo in all_ipo['ipoCalendar']:
try:
shares = human_format(ipo['numberOfShares'])
except:
shares = 'N/A'
try:
sharesvalue = human_format(ipo['totalSharesValue'])
except:
sharesvalue = 'N/A'
ipo_list.append({
'date':ipo['date'],
'name':ipo['name'],
'shares':shares,
'price':ipo['price'],
'status':ipo['status'],
'symbol':ipo['symbol'],
'sharesvalue':sharesvalue
})
else:
ipo_list = ['No Data']
except:
2023-03-08 15:30:17 +08:00
ipo_list = ['No Data']
2023-03-08 15:47:31 +08:00
2023-03-08 15:30:17 +08:00
ipo_settings['symbols'] = ipo_list
with open('csv/ipo_settings.json', 'w+') as f:
json.dump(ipo_settings, f)
2023-03-08 15:30:17 +08:00
2023-01-09 16:23:25 +08:00
2022-10-06 13:00:59 +08:00
def updateIndices(api_key, logf):
try:
try:
f = open('csv/indices_settings.json', 'r')
all_indices_settings = json.load(f)
f.close()
except:
all_indices_settings = {"feature": "Stocks", "speed": "fast", "speed2": "slow", "animation": "up", "percent": True, "point": True, "logos": True, "chart": False, "title": True, "symbols": {"^HSI": {"name": "HSI", "current": "18083.06", "point_change": "1003.55", "percent_change": "5.88"}, "^GSPC": {"name": "S&P 500", "current": "3790.93", "point_change": "112.50", "percent_change": "3.06"}, "^RUT": {"name": "RUSSELL 2000", "current": "1775.77", "point_change": "66.90", "percent_change": "3.91"}, "^GDAXI": {"name": "DAX", "current": "12648.95", "point_change": "-21.53", "percent_change": "-0.17"}, "^FTSE": {"name": "FTSE 100", "current": "7058.68", "point_change": "-27.82", "percent_change": "-0.39"}, "^FCHI": {"name": "CAC 40", "current": "6031.45", "point_change": "-8.24", "percent_change": "-0.14"}, "399001.SZ": {"name": "SZSE", "current": "10778.61", "point_change": "-140.83", "percent_change": "-1.29"}, "^STOXX50E": {"name": "STOXX 50", "current": "3476.55", "point_change": "-7.93", "percent_change": "-0.23"}, "^AXJO": {"name": "ASX 200", "current": "6815.70", "point_change": "116.40", "percent_change": "1.74"}, "^DJI": {"name": "DOW JONES", "current": "30316.32", "point_change": "825.43", "percent_change": "2.80"}, "^STOXX": {"name": "STOXX 600", "current": "402.33", "point_change": "-0.70", "percent_change": "-0.17"}}}
2022-10-06 13:00:59 +08:00
index_info = all_indices_settings['symbols']
symbols = list(index_info.keys())
url = 'https://bm7p954xoh.execute-api.us-east-2.amazonaws.com/default/ScriptsAPI/indices?symbols='
for symbol in symbols:
url += symbol + ','
url += '&apiKey=' + api_key
response = requests.get(url)
data = response.json()
index_info = {}
if len(data) > 0:
for symbol in symbols:
for index in data:
if index['symbol'] == symbol:
index_info[index['symbol']] = {'name': index['name'], 'current': index['price'], 'point_change': index['change'], 'percent_change': index['percent_change']}
all_indices_settings['symbols'] = index_info
with open('csv/indices_settings.json', 'w+') as f:
json.dump(all_indices_settings, f)
2022-10-06 13:00:59 +08:00
2022-10-21 17:12:13 +08:00
except:
pass
2022-10-06 13:00:59 +08:00
2022-10-21 17:12:13 +08:00
#logf = open('log.txt', "a")
#exc_type, exc_obj, exc_tb = sys.exc_info()
#fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)[1]
#logf.write(str(e))
#logf.write('. file: ' + fname)
#logf.write('. line: ' + str(exc_tb.tb_lineno))
#logf.write('. type: ' + str(exc_type))
#logf.write('\n ' + "".join(traceback.format_exception(sys.exc_info()[0], sys.exc_info()[1], sys.exc_info()[2])))
#logf.close()
2022-10-06 13:00:59 +08:00
2022-03-05 14:03:11 +00:00
def updateCrypto(api_key, logf):
2022-04-07 18:35:38 +01:00
try:
try:
f = open('csv/crypto_settings.json', 'r')
all_crypto_settings = json.load(f)
f.close()
except:
all_crypto_settings = {"feature": "Stocks", "speed": "medium","speed2": "medium", "animation": "down", "percent": False, "point": True, "logos": True, "chart": False, "title": True, "lohivol": False, "display_name": False, "symbols": {"ETH,USD": {"current": "2629.32", "24hr_change": "-27.6432", "percent_change": "-1.04"}, "BTC,USD": {"current": "38161.00", "24hr_change": "-50.8386", "percent_change": "-0.13"}, "BNB,USD": {"current": "372.57", "24hr_change": "0.4140", "percent_change": "0.11"}, "ADA,BTC": {"current": "0.0000", "24hr_change": "-0.0000", "percent_change": "-3.74"}}}
coin_info = all_crypto_settings['symbols']
symbol_base = list(coin_info.keys())
symbols = [sb.split(',')[0] for sb in symbol_base]
bases = [sb.split(',')[1] for sb in symbol_base]
unique_bases = list(set(bases))
2022-01-29 09:26:55 +00:00
url = 'https://bm7p954xoh.execute-api.us-east-2.amazonaws.com/default/ScriptsAPI/crypto?symbols='
2022-01-29 09:26:55 +00:00
for i,s in enumerate(symbols):
url += bases[i] + '-' + s + ','
url = url[:-1] #remove last comma
2022-01-31 19:11:01 +00:00
url += '&apiKey=' + api_key
2022-04-07 18:35:38 +01:00
2022-01-29 09:26:55 +00:00
response = requests.get(url)
data = response.json()
2022-04-07 18:35:38 +01:00
coin_info = {}
2022-02-28 16:38:24 +00:00
if len(data) > 0:
2022-03-01 18:37:41 +00:00
for sb in symbol_base:
for i,d in enumerate(data):
symbol = d['symbol']
base = d['currency']
if symbol.upper() + ',' + base.upper() == sb:
2023-09-07 17:38:19 +08:00
coin_info[symbol.upper() + ',' + base.upper()] = {'current': d['price'], '24hr_change': d['price_over_24hr'], 'percent_change': d['percent_over_24hr'], 'volume': human_format(d['volume']), 'day_low': d['day_low'], 'day_high': d['day_high'], 'name': d['name']}
2022-03-01 18:37:41 +00:00
2022-02-28 16:38:24 +00:00
all_crypto_settings['symbols'] = coin_info
with open('csv/crypto_settings.json', 'w+') as f:
json.dump(all_crypto_settings, f)
2022-10-21 17:12:13 +08:00
except:
pass
#logf = open('log.txt', "a")
#exc_type, exc_obj, exc_tb = sys.exc_info()
#fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)[1]
#logf.write(str(e))
#logf.write('. file: ' + fname)
#logf.write('. line: ' + str(exc_tb.tb_lineno))
#logf.write('. type: ' + str(exc_type))
#logf.write('\n ' + "".join(traceback.format_exception(sys.exc_info()[0], sys.exc_info()[1], sys.exc_info()[2])))
#logf.close()
2022-03-05 14:03:11 +00:00
def updateForex(api_key, logf):
2022-04-07 18:35:38 +01:00
try:
try:
f = open('csv/forex_settings.json', 'r')
all_forex_settings = json.load(f)
f.close()
except:
all_forex_settings = {"feature": "Stocks", "speed": "medium", "speed2": "medium", "animation": "down", "percent": False, "point": True, "logos": True, "chart": False, "title": True, "symbols": {"EUR,USD": {"current": "1.1334", "24hr_change": "-0.0003", "percent_change": "0.00"}, "USD,JPY": {"current": "114.960", "24hr_change": "0.1600", "percent_change": "0.14"}, "GBP,USD": {"current": "1.3577", "24hr_change": "-0.0031", "percent_change": "-0.23"}, "USD,CHF": {"current": "0.9198", "24hr_change": "0.0029", "percent_change": "0.32"}}}
forex_info = all_forex_settings['symbols']
symbol_base = list(forex_info.keys())
symbols = [sb.split(',')[0] for sb in symbol_base]
bases = [sb.split(',')[1] for sb in symbol_base]
unique_bases = list(set(bases))
targets = ','.join(symbols)
2022-01-29 09:26:55 +00:00
url = 'https://bm7p954xoh.execute-api.us-east-2.amazonaws.com/default/ScriptsAPI/forex?symbols='
for i,s in enumerate(symbols):
url += s + '-' + bases[i] + ','
url = url[:-1] #remove last comma
2022-01-31 19:11:01 +00:00
url += '&apiKey=' + api_key
2022-01-29 09:26:55 +00:00
response = requests.get(url)
data = response.json()
2023-06-14 16:44:37 +08:00
2022-02-28 16:38:24 +00:00
if len(data) > 0:
c_dict = {}
2022-03-01 18:37:41 +00:00
for sb in symbol_base:
for d in data:
if d['uid'].replace('/',',') == sb:
c_dict[d['uid'].replace('/',',')] = {'current': d['rate'], '24hr_change': d['rate_over_24hr'], 'percent_change':d['percent_over_24hr']}
2022-02-28 16:38:24 +00:00
all_forex_settings['symbols'] = c_dict
2022-04-07 18:35:38 +01:00
with open('csv/forex_settings.json', 'w+') as f:
json.dump(all_forex_settings, f)
2022-10-21 17:12:13 +08:00
except:
pass
#logf = open('log.txt', "a")
#exc_type, exc_obj, exc_tb = sys.exc_info()
#fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)[1]
#logf.write(str(e))
#logf.write('. file: ' + fname)
#logf.write('. line: ' + str(exc_tb.tb_lineno))
#logf.write('. type: ' + str(exc_type))
#logf.write('\n ' + "".join(traceback.format_exception(sys.exc_info()[0], sys.exc_info()[1], sys.exc_info()[2])))
#logf.close()
2023-06-14 16:44:37 +08:00
def updateEconomic(api_key, logf):
2023-06-14 17:00:48 +08:00
try:
with open('csv/economic_settings.json','r') as f:
all_economic_settings = json.load(f)
except:
all_economic_settings = {"feature": "Economic Calendar", "speed": "medium", "speed2": "medium", "animation": "up", "importance": "Med - High", "title": True, "timezone": "US/Eastern", "countries": ["United States"], "events": []}
try:
url = 'https://economic-calendar.tradingview.com/events'
headers = {'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.7',
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36'}
country_codes = {
'United States':'US', 'Canada':'CA', 'Hong Kong':'HK', 'China':'CN', 'Germany':'DE','France':'FR', 'Italy':'IT', 'Singapore':'SG',
'South Korea':'KR', 'Japan':'JP', 'Australia':'AU', 'New Zealand':'NZ', 'India':'IN', 'Switzerland':'CH', 'United Kingdom':'GB',
'Spain':'ES', 'Portugal':'PT', 'Netherlands':'NL', 'Belgium':'BE', 'Austria':'AT', 'Denmark':'DK', 'Turkey':'TR', 'Brazil':'BR',
'Mexico':'MX', 'Sweden':'SE', 'Finland':'FI', 'Norway':'NO', 'Taiwan':'TW', 'Indonesia':'ID', 'Philippines':'PH', 'Thailand':'TH',
'South Africa':'ZA'}
country = all_economic_settings['countries']
2023-06-14 17:11:17 +08:00
if all_economic_settings['importance'] == 'Low - High':
2023-06-14 17:00:48 +08:00
importance = -1
2023-06-14 17:11:17 +08:00
elif all_economic_settings['importance'] == 'Med - High':
2023-06-14 17:00:48 +08:00
importance = 0
2023-06-14 17:11:17 +08:00
elif all_economic_settings['importance'] == 'High':
2023-06-14 17:00:48 +08:00
importance = 1
country_codes_list = [country_codes[c] for c in country]
result = ",".join(country_codes_list)
timezone = pytz.timezone(all_economic_settings['timezone'])
date_local = datetime.now(timezone)
date_local = (date_local - timedelta(hours=2)).strftime('%Y-%m-%dT%H:%M:00')
#date_local = datetime.now(timezone).strftime('%Y-%m-%dT00:00:00')
2023-06-14 17:00:48 +08:00
date_local2 = datetime.now(timezone).strftime('%Y-%m-%dT23:59:00')
date_from = timezone.localize(datetime.strptime(date_local,'%Y-%m-%dT%H:%M:%S')).astimezone(pytz.timezone('GMT')).strftime('%Y-%m-%dT%H:%M:%S.000Z')
date_to = timezone.localize(datetime.strptime(date_local2,'%Y-%m-%dT%H:%M:%S')).astimezone(pytz.timezone('GMT')).strftime('%Y-%m-%dT%H:%M:%S.000Z')
params = {
'from': date_from,
'to': date_to,
'countries': result,
'minImportance': importance
}
data = requests.get(url, params=params, headers=headers).json()
events = []
try:
for each in data['result']:
try:
time = pytz.timezone('GMT').localize(datetime.strptime(each['date'], '%Y-%m-%dT%H:%M:%S.%fZ')).astimezone(timezone).strftime('%a %m/%d %H:%M%p')
if datetime.now(timezone).strftime('%a %m/%d %H:%M%p') >= time:
happened = True
else:
happened = False
try:
unit = str(each['unit'])
except:
unit = ''
try:
scale = str(each['scale'])
except:
scale = ''
if scale != '':
if each['actual'] != '' and each['actual'] is not None:
each['actual'] = str(each['actual']) + scale
if each['previous'] != '' and each['previous'] is not None:
each['previous'] = str(each['previous']) + scale
if each['forecast'] != '' and each['forecast'] is not None:
each['forecast'] = str(each['forecast']) + scale
if unit != '' and scale != '':
if each['actual'] != '' and each['actual'] is not None:
each['actual'] = str(each['actual']) + ' ' + unit
if each['previous'] != '' and each['previous'] is not None:
each['previous']= str(each['previous']) + ' ' + unit
if each['forecast'] != '' and each['forecast'] is not None:
each['forecast'] = str(each['forecast']) + ' ' + unit
elif unit != '' and scale == '':
if each['actual'] != '' and each['actual'] is not None:
each['actual'] = str(each['actual']) + unit
if each['previous'] != '' and each['previous'] is not None:
each['previous']= str(each['previous']) + unit
if each['forecast'] != '' and each['forecast'] is not None:
each['forecast'] = str(each['forecast']) + unit
events.append({
'title':each['title'],
'indicator':each['indicator'],
'period':each['period'],
'country':each['country'],
'importance':each['importance'],
'time':time,
'actual':each['actual'],
'previous':each['previous'],
'forecast':each['forecast'],
'happened': happened
})
except:
pass
except:
pass
all_economic_settings['events'] = events
with open('csv/economic_settings.json', 'w+') as f:
json.dump(all_economic_settings, f)
2023-06-14 17:00:48 +08:00
except:
pass
2023-07-12 17:51:44 +08:00
def updateJokes(api_key, logf):
try:
with open('csv/jokes_settings.json', 'r') as f:
jokes_settings = json.load(f)
except:
2023-07-17 14:38:58 +08:00
jokes_settings = {"feature": "Jokes", "speed": "medium", "speed2": "medium", "animation": "up", "title": True, "safe": True, "categories": ["Any"], "blacklist": [], "amount": "5", "jokes": []}
2023-07-12 17:51:44 +08:00
try:
if 'Any' in jokes_settings['categories']:
categories = 'Any'
else:
categories = ','.join(jokes_settings['categories'])
2023-07-12 17:51:44 +08:00
blacklist = ','.join(jokes_settings['blacklist'])
amount = jokes_settings['amount']
jokes_settings['jokes'] = []
joke_url = 'https://v2.jokeapi.dev/joke/'+categories+'?amount='+amount
if blacklist != '':
joke_url = 'https://v2.jokeapi.dev/joke/'+categories+ '?blacklistFlags=' + blacklist + '&amount='+amount
2023-07-17 14:38:58 +08:00
if jokes_settings['safe']:
joke_url += '&safe-mode'
2023-07-12 17:51:44 +08:00
get_jokes = requests.get(joke_url)
all_jokes = get_jokes.json()
for each_joke in all_jokes['jokes']:
jokes_settings['jokes'].append(each_joke)
with open('csv/jokes_settings.json', 'w') as f:
json.dump(jokes_settings,f)
except:
pass
2023-08-08 18:30:48 +08:00
def updateMarket(api_key, logf):
try:
try:
f = open('csv/market_settings.json', 'r')
all_market_settings = json.load(f)
f.close()
except:
all_market_settings = {"feature": "Gainers, Losers, Active", "speed": "medium", "speed2": "medium", "animation": "up", "percent": True, "point": True, "logos": True, "chart": False, "title": True, "lohivol": False, "display_name": False, "categories": ["Top Gainers", "Top Losers", "Most Active"], "gainers": {}, "losers": {}, "mostactive": {}}
2023-08-08 18:30:48 +08:00
2023-08-14 18:31:07 +08:00
try:
f = open('csv/sector_settings.json', 'r')
all_sector_settings = json.load(f)
f.close()
except:
all_sector_settings = {"feature": "Sector Performance", "speed": "medium", "speed2": "medium", "animation": "up", "logos": True, "title": True, "sectors": ["Energy", "Financials", "Real Estate", "Technology"], "data": {}}
2023-08-08 18:30:48 +08:00
headers = {'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.7',
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36'}
url = 'https://cloud.iexapis.com/stable/stock/market/overview?token=pk_aff870df1a984daa9dd43c71801c1936&'
data = requests.get(url, headers=headers).json()
mostactive = data['mostactive']
gainers = data['gainers']
losers = data['losers']
2023-08-14 18:31:07 +08:00
sectors = data['sectorPerformance']
2023-08-08 21:39:34 +08:00
all_market_settings['losers'] = {}
all_market_settings['gainers'] = {}
all_market_settings['mostactive'] = {}
2023-08-14 18:31:07 +08:00
all_sector_settings['data'] = {}
2023-08-08 21:39:34 +08:00
2023-08-08 18:30:48 +08:00
try:
for item in losers:
all_market_settings['losers'][item['symbol']] = {
"current": str(item['latestPrice']),
"change": str(item['change']),
2023-08-08 18:41:17 +08:00
"percent_change": str(item['changePercent'] * 100),
2023-08-08 18:30:48 +08:00
"day_low": str(item['low']),
"day_high": str(item['high']),
"volume": human_format(item['latestVolume']),
2023-09-13 22:49:54 +08:00
"name": item['companyName'].split(' - ')[0].replace('Corp.', 'Corp').replace('Corporation', 'Corp')
2023-08-08 18:30:48 +08:00
}
except:
pass
try:
for item in gainers:
all_market_settings['gainers'][item['symbol']] = {
"current": str(item['latestPrice']),
"change": str(item['change']),
2023-08-08 18:41:17 +08:00
"percent_change": str(item['changePercent'] * 100),
2023-08-08 18:30:48 +08:00
"day_low": str(item['low']),
"day_high": str(item['high']),
"volume": human_format(item['latestVolume']),
2023-09-13 22:49:54 +08:00
"name": item['companyName'].split(' - ')[0].replace('Corp.', 'Corp').replace('Corporation', 'Corp')
2023-08-08 18:30:48 +08:00
}
except:
pass
try:
for item in mostactive:
all_market_settings['mostactive'][item['symbol']] = {
"current": str(item['latestPrice']),
"change": str(item['change']),
2023-08-08 18:41:17 +08:00
"percent_change": str(item['changePercent'] * 100),
2023-08-08 18:30:48 +08:00
"day_low": str(item['low']),
"day_high": str(item['high']),
"volume": human_format(item['latestVolume']),
2023-09-13 22:49:54 +08:00
"name": item['companyName'].split(' - ')[0].replace('Corp.', 'Corp').replace('Corporation', 'Corp')
2023-08-08 18:30:48 +08:00
}
except:
pass
2023-08-14 18:31:07 +08:00
try:
for item in sectors:
all_sector_settings['data'][item['name']] = {
2023-08-14 18:31:07 +08:00
"current": str(item['performance'] * 100),
"name": str(item['name']),
"symbol": str(item['symbol'])
2023-08-14 18:31:07 +08:00
}
except:
pass
2023-08-08 18:30:48 +08:00
with open('csv/market_settings.json', 'w+') as f:
json.dump(all_market_settings, f)
2023-08-14 18:31:07 +08:00
with open('csv/sector_settings.json', 'w+') as f:
json.dump(all_sector_settings, f)
2023-08-08 18:30:48 +08:00
except:
pass
2022-03-05 14:03:11 +00:00
def updateNews(api_key, logf):
try:
try:
f = open('csv/news_settings.json', 'r')
all_settings = json.load(f)
f.close()
except:
all_settings = {"feature": "News", "speed": "medium", "speed2": "medium", "animation": "down", "country": "US", "category": "General", "title": True, "headlines": [], "use_category": True, "use_country": False, "num_headlines": "10"}
2023-03-17 19:03:20 +08:00
2022-02-24 19:42:33 +00:00
if all_settings['use_country']:
if all_settings['country'] == 'Worldwide':
2022-03-08 02:10:59 +08:00
url = 'https://bm7p954xoh.execute-api.us-east-2.amazonaws.com/default/ScriptsAPI/news_worldwide?'
2022-02-24 19:42:33 +00:00
else:
2023-03-17 19:03:20 +08:00
c_dict = {'United States':'US', 'Australia':'AU', 'Canada': 'CA', 'Great Britain':'GB', 'New Zealand':'NZ', 'Ireland':'IE', 'Singapore':'SG', 'South Africa': 'ZA', 'Germany': 'DE', 'Hong Kong': 'HK', 'Japan': 'JP', 'South Korea': 'KR', 'China': 'CN', 'France': 'FR', 'India': 'IN', 'Italy': 'IT', 'Switzerland': 'CH', 'Netherlands': 'NL', 'Spain': 'ES', 'Brazil': 'BR', 'Portugal': 'PT'}
2022-02-24 19:42:33 +00:00
cc = c_dict[all_settings['country']]
url = 'https://bm7p954xoh.execute-api.us-east-2.amazonaws.com/default/ScriptsAPI/news?country={}'.format(cc)
elif all_settings['use_category']:
url = 'https://bm7p954xoh.execute-api.us-east-2.amazonaws.com/default/ScriptsAPI/news?category={}'.format(all_settings['category'])
2022-01-31 19:11:01 +00:00
url += '&apiKey=' + api_key
response = requests.get(url)
data = response.json()
2022-04-07 18:35:38 +01:00
2022-02-28 16:38:24 +00:00
if len(data) > 0:
max_headlines = int(all_settings['num_headlines'])
#load user settings
headlines = data[:max_headlines]
2023-03-17 19:03:20 +08:00
headline_sources = [headline['source'] for headline in headlines]
2022-02-28 16:38:24 +00:00
headline_titles = [headline['title'] for headline in headlines]
headline_times = [headline['publishedAt'] for headline in headlines]
headlines = list(zip(headline_titles, headline_sources, headline_times))
2022-04-07 18:35:38 +01:00
2022-02-28 16:38:24 +00:00
all_settings['headlines'] = headlines
with open('csv/news_settings.json', 'w+') as f:
json.dump(all_settings, f)
2022-10-21 17:12:13 +08:00
except:
pass
#logf = open('log.txt', "a")
#exc_type, exc_obj, exc_tb = sys.exc_info()
#fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)[1]
#logf.write(str(e))
#logf.write('. file: ' + fname)
#logf.write('. line: ' + str(exc_tb.tb_lineno))
#logf.write('. type: ' + str(exc_type))
#logf.write('\n ' + "".join(traceback.format_exception(sys.exc_info()[0], sys.exc_info()[1], sys.exc_info()[2])))
#logf.close()
2022-03-05 14:03:11 +00:00
def updateWeather(api_key, logf):
2022-04-07 18:35:38 +01:00
try:
gn = geocoders.GeoNames(username='fintic')
2023-05-23 16:09:20 +08:00
weather_codes = {
0: ['Clear', 'Clear sky'],
1: ['Clouds', 'few clouds'], 2: ['Clouds', 'scattered clouds'], 3: ['Clouds', 'overcast clouds'],
45: ['Fog', 'Fog'], 48: ['Fog', 'depositing rime fog'],
51: ['Drizzle', 'Light'], 53: ['Drizzle', 'moderate'], 55: ['Drizzle', 'dense'], 56: ['Drizzle', 'light'], 57: ['Drizzle', 'dense'],
61: ['Rain', 'light rain'], 63: ['Rain', 'moderate rain'], 65: ['Rain', 'very heavy rain'],
66: ['Rain', 'freezing rain'], 67: ['Rain', 'freezing rain'],
71: ['Snow', 'slight'], 73: ['Snow', 'moderate'], 75: ['Snow', 'heavy'], 77: ['Snow', 'Snow grains'], 85: ['Snow', 'slight'], 86: ['Snow', 'heavy'],
80: ['Rain', 'light intensity shower rain'], 81: ['Rain', 'shower rain'], 82: ['Rain', 'heavy intensity shower rain'],
95: ['Thunderstorm', 'Slight or moderate'], 96: ['Thunderstorm', 'slight hail'], 99: ['Thunderstorm', 'heavy hail']
}
try:
f = open('csv/daily_weather.json', 'r')
all_daily_settings = json.load(f)
f.close()
except:
all_daily_settings = {"feature": "Current Weather", "speed": "medium", "animation": "down", "temp": "celsius", "wind_speed": "miles/hour", "colour": "white", "city_colour": "yellow", "title": True, "locations": {"Hong Kong": [{"main_weather": "Thunderstorm", "description": "Slight or moderate", "min_temp": 28.2, "max_temp": 30.8, "temp": 30.4, "rain_chance": 17, "humidity": 77, "wind_speed": 11.1, "uv": 5.3, "clouds": 100, "wind_direction": 193, "visibility": 10000}, {"main_weather": "Clouds", "description": "overcast clouds", "min_temp": 27.9, "max_temp": 32.3}, {"main_weather": "Thunderstorm", "description": "Slight or moderate", "min_temp": 27.7, "max_temp": 31.2}, {"main_weather": "Thunderstorm", "description": "Slight or moderate", "min_temp": 28.1, "max_temp": 31.5}, {"main_weather": "Rain", "description": "light intensity shower rain", "min_temp": 28.5, "max_temp": 31.1}, {"main_weather": "Clouds", "description": "overcast clouds", "min_temp": 28.9, "max_temp": 31.5}, {"main_weather": "Clouds", "description": "scattered clouds", "min_temp": 29.0, "max_temp": 31.9}]}, "current_weather": False, "speed2": "medium"}
try:
f = open('csv/current_weather.json', 'r')
all_current_settings = json.load(f)
f.close()
except:
all_current_settings = {"feature": "Current Weather", "speed": "medium", "animation": "down", "temp": "celsius", "wind_speed": "miles/hour", "colour": "white", "city_colour": "yellow", "title": True, "locations": {"Hong Kong": {"main_weather": "Clouds", "description": "overcast clouds", "temp": 30.4, "min_temp": 28.2, "max_temp": 30.8, "feels_like": 36.0, "humidity": 77, "clouds": 100, "visibility": 10000, "uv": 5.3, "rain_chance": 17, "wind_speed": 11.1, "wind_direction": 193, "is_day": 1}}, "current_weather": True, "speed2": "medium"}
2023-05-23 16:09:20 +08:00
current_locations = list(all_current_settings['locations'].keys())
daily_locations = list(all_daily_settings['locations'].keys())
all_locations = list(set(current_locations + daily_locations))
2023-05-23 16:09:20 +08:00
2022-04-07 18:35:38 +01:00
current_weathers = {}
daily_weathers = {}
2023-05-23 16:09:20 +08:00
for location in all_locations:
loc = gn.geocode(location)
current_weather = {}
2023-05-23 16:09:20 +08:00
lat = loc.latitude
lon = loc.longitude
2023-05-23 16:09:20 +08:00
url = 'https://api.open-meteo.com/v1/forecast?latitude={}&longitude={}&hourly=apparent_temperature,temperature_2m,relativehumidity_2m,precipitation_probability,weathercode,cloudcover,visibility,windspeed_10m,winddirection_10m,uv_index,is_day&daily=weathercode,temperature_2m_max,temperature_2m_min&current_weather=true&timezone=UTC'.format(lat, lon)
r = requests.get(url).json()
times = r['hourly']['time']
hour_now = datetime.now(pytz.utc).strftime('%Y-%m-%dT%H:00')
index_pos = times.index(hour_now)
main_weather_code = r['hourly']['weathercode'][index_pos]
current_weather['main_weather'] = weather_codes[main_weather_code][0]
current_weather['description'] = weather_codes[main_weather_code][1]
current_weather['temp'] = r['hourly']['temperature_2m'][index_pos]
current_weather['min_temp'] = r['daily']['temperature_2m_min'][0]
current_weather['max_temp'] = r['daily']['temperature_2m_max'][0]
current_weather['feels_like'] = r['hourly']['apparent_temperature'][index_pos]
current_weather['humidity'] = r['hourly']['relativehumidity_2m'][index_pos]
current_weather['clouds'] = r['hourly']['cloudcover'][index_pos]
2023-05-23 16:53:14 +08:00
if r['hourly']['visibility'][index_pos] > 10000:
current_weather['visibility'] = 10000
else:
current_weather['visibility'] = r['hourly']['visibility'][index_pos]
2023-05-23 16:09:20 +08:00
current_weather['uv'] = r['hourly']['uv_index'][index_pos]
current_weather['rain_chance'] = r['hourly']['precipitation_probability'][index_pos]
current_weather['wind_speed'] = r['hourly']['windspeed_10m'][index_pos]
current_weather['wind_direction'] = r['hourly']['winddirection_10m'][index_pos]
current_weather['is_day'] = r['hourly']['is_day'][index_pos]
2022-04-07 18:35:38 +01:00
if location in current_locations:
current_weathers[location] = current_weather
2023-05-23 16:09:20 +08:00
daily_weather = []
2023-05-23 16:09:20 +08:00
daily = r['daily']
for i in range(0,7):
dct = {}
2023-05-23 16:09:20 +08:00
daily_weather_code = daily['weathercode'][i]
dct['main_weather'] = weather_codes[daily_weather_code][0]
dct['description'] = weather_codes[daily_weather_code][1]
dct['min_temp'] = daily['temperature_2m_min'][i]
dct['max_temp'] = daily['temperature_2m_max'][i]
daily_weather.append(dct)
2023-05-23 16:09:20 +08:00
# add relevant urrent information to first day in daily
daily_weather[0]['temp'] = current_weather['temp']
daily_weather[0]['rain_chance'] = current_weather['rain_chance']
daily_weather[0]['humidity'] = current_weather['humidity']
daily_weather[0]['wind_speed'] = current_weather['wind_speed']
daily_weather[0]['uv'] = current_weather['uv']
daily_weather[0]['clouds'] = current_weather['clouds']
daily_weather[0]['wind_speed'] = current_weather['wind_speed']
daily_weather[0]['wind_direction'] = current_weather['wind_direction']
daily_weather[0]['visibility'] = current_weather['visibility']
2023-05-23 16:09:20 +08:00
2022-04-07 18:35:38 +01:00
if location in daily_locations:
daily_weathers[location] = daily_weather
2022-04-11 18:33:28 +01:00
all_current_settings['locations'] = current_weathers
all_daily_settings['locations'] = daily_weathers
2023-05-23 16:09:20 +08:00
with open('csv/current_weather.json', 'w+') as f:
json.dump(all_current_settings, f)
with open("csv/daily_weather.json", 'w+') as f:
json.dump(all_daily_settings, f)
2023-05-23 16:09:20 +08:00
2022-10-21 17:12:13 +08:00
except:
pass
#logf = open('log.txt', "a")
#exc_type, exc_obj, exc_tb = sys.exc_info()
#fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)[1]
#logf.write(str(e))
#logf.write('. file: ' + fname)
#logf.write('. line: ' + str(exc_tb.tb_lineno))
#logf.write('. type: ' + str(exc_type))
#logf.write('\n ' + "".join(traceback.format_exception(sys.exc_info()[0], sys.exc_info()[1], sys.exc_info()[2])))
#logf.close()
2022-04-11 18:33:28 +01:00
2022-03-05 14:03:11 +00:00
def updateLeagueTables(api_key, logf):
2022-04-07 18:35:38 +01:00
2022-01-29 09:26:55 +00:00
url = 'https://bm7p954xoh.execute-api.us-east-2.amazonaws.com/default/ScriptsAPI/sports?stats='
try:
try:
f = open('csv/league_tables.json', 'r')
all_settings = json.load(f)
f.close()
except:
all_settings = {"feature": "Sports (Team Stats)", "speed": "medium", "speed2": "medium","animation": "down", "title": True, "top20": 20, "leagues": {'NFL':[]}}
leagues = all_settings['leagues'].keys()
leagues_info = {}
2022-01-29 09:26:55 +00:00
for league in leagues:
2022-03-03 23:01:42 +08:00
if league == 'PREMIERLEAGUE':
2022-03-04 23:00:20 +08:00
url += 'PREMIERLEAGUE,'
2022-02-26 15:50:10 +00:00
else:
url += league + ','
2022-01-29 09:26:55 +00:00
url = url[:-1] # remove last comma
2022-01-31 19:11:01 +00:00
url += '&apiKey=' + api_key
2022-01-29 09:26:55 +00:00
r = requests.get(url)
all_data = r.json()
2022-03-05 10:37:22 +00:00
for i,l in enumerate(all_data):
league = list(l.keys())[0]
teams = []
if league == 'pga' or league == 'lpga':
logo_files = []
for d in all_data[i][league]:
del d['_id'], d['updated']
teams.append(d)
try:
if d['country'].split('/')[-1].split('&')[0] not in os.listdir('logos/ufc_countries/'):
urllib.request.urlretrieve(d['country'], 'logos/ufc_countries/' + d['country'].split('/')[-1].split('&')[0])
except:
pass
try:
if league == 'pga':
if d['photo'].split('/')[-1].split('&')[0] not in os.listdir('logos/pga_rank/'):
urllib.request.urlretrieve(d['photo'],'logos/pga_rank/' + d['photo'].split('/')[-1].split('&')[0])
elif league == 'lpga':
if d['photo'].split('/')[-1] not in os.listdir('logos/lpga_rank/'):
urllib.request.urlretrieve(d['photo'],'logos/lpga_rank/' + d['photo'].split('/')[-1])
except:
pass
try:
if league == 'pga':
logo_files.append(d['photo'].split('/')[-1].split('&')[0])
elif league == 'lpga':
logo_files.append(d['photo'].split('/')[-1])
except:
pass
if league == 'pga':
for file in os.listdir('logos/pga_rank/'):
if file not in logo_files:
os.remove('logos/pga_rank/'+ file)
elif league == 'lpga':
for file in os.listdir('logos/lpga_rank/'):
if file not in logo_files:
os.remove('logos/lpga_rank/'+ file)
else:
for d in all_data[i][league]:
team = {}
team['name'] = d['strTeam']
team['wins'] = d['intWin']
team['loss'] = d['intLoss']
team['draw'] = d['intDraw']
#team['played'] = d['intPlayed']
team['standing'] = d['intRank']
#team['points'] = d['intPoints']
teams.append(team)
2022-01-29 09:26:55 +00:00
leagues_info[league.upper()] = teams
2022-01-31 19:11:01 +00:00
all_settings['leagues'] = leagues_info
with open("csv/league_tables.json".format(league), 'w+') as f:
json.dump(all_settings, f)
2022-10-21 17:12:13 +08:00
except:
pass
#logf = open('log.txt', "a")
#exc_type, exc_obj, exc_tb = sys.exc_info()
#fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)[1]
#logf.write(str(e))
#logf.write('. file: ' + fname)
#logf.write('. line: ' + str(exc_tb.tb_lineno))
#logf.write('. type: ' + str(exc_type))
#logf.write('\n ' + "".join(traceback.format_exception(sys.exc_info()[0], sys.exc_info()[1], sys.exc_info()[2])))
#logf.close()
2023-01-09 17:59:07 +08:00
def updatePLtime():
f = open('csv/live_games.json')
try:
all_settings = json.load(f)
f.close()
try:
for league in all_settings['leagues']:
if league == 'PREMIERLEAGUE':
subprocess.run(["sudo", "pkill", "-f", "live_pl.py"], shell=False)
premierleague = subprocess.Popen(["python3", "live_pl.py"], shell=False)
except:
pass
except:
pass
2022-03-05 14:03:11 +00:00
def updateLeagueEvents(api_key, time, logf):
2022-04-07 18:35:38 +01:00
2022-01-29 09:26:55 +00:00
url = 'https://bm7p954xoh.execute-api.us-east-2.amazonaws.com/default/ScriptsAPI/sports?{}='.format(time)
try:
if time == 'past':
f = open('csv/past_games.json')
elif time == 'upcoming':
f = open('csv/upcoming_games.json')
elif time == 'livescore':
f = open('csv/live_games.json')
all_settings = json.load(f)
f.close()
except:
if time == 'past':
all_settings = {"feature": "Sports (Past Games)", "speed2": "medium", "speed": "medium", "animation": "down", "title": True, "leagues": {"NFL": []}}
elif time == 'upcoming':
all_settings = {"feature": "Sports (Upcoming Games)", "speed": "medium", "speed2": "medium", "animation": "down", "title": True, "leagues": {"NFL": [{"date": "2021-11-22", "time": "01:20:00", "round": "11", "home_team": "Los Angeles Chargers", "home_score": "41", "away_team": "Pittsburgh Steelers", "away_score": "37"}]}}
elif time == 'livescore':
all_settings = {"feature": "Sports (Live Games)", "speed": "medium", "speed2": "medium", "animation": "down", "title": True, "leagues": {}}
2023-01-09 17:59:07 +08:00
try:
2023-01-09 17:59:07 +08:00
if time == 'livescore':
try:
leagues_info = {}
for league in all_settings['leagues']:
events = []
if league == 'NFL':
subprocess.run(["sudo", "pkill", "-f", "live_nfl.py"], shell=False)
nfl = subprocess.Popen(["python3", "live_nfl.py"], shell=False)
events.append('Filled')
leagues_info[league.upper()] = events
if league == 'NBA':
subprocess.run(["sudo", "pkill", "-f", "live_nba.py"], shell=False)
nba = subprocess.Popen(["python3", "live_nba.py"], shell=False)
events.append('Filled')
leagues_info[league.upper()] = events
if league == 'NHL':
subprocess.run(["sudo", "pkill", "-f", "live_nhl.py"], shell=False)
nhl = subprocess.Popen(["python3", "live_nhl.py"], shell=False)
events.append('Filled')
leagues_info[league.upper()] = events
if league == 'MLB':
subprocess.run(["sudo", "pkill", "-f", "live_mlb.py"], shell=False)
mlb = subprocess.Popen(["python3", "live_mlb.py"], shell=False)
events.append('Filled')
leagues_info[league.upper()] = events
if league == 'PREMIERLEAGUE':
subprocess.run(["sudo", "pkill", "-f", "live_pl.py"], shell=False)
premierleague = subprocess.Popen(["python3", "live_pl.py"], shell=False)
events.append('Filled')
leagues_info[league.upper()] = events
if league == 'MLS':
subprocess.run(["sudo", "pkill", "-f", "live_mls.py"], shell=False)
mls = subprocess.Popen(["python3", "live_mls.py"], shell=False)
events.append('Filled')
leagues_info[league.upper()] = events
all_settings['leagues'] = leagues_info
with open('csv/live_games.json', 'w+') as f:
json.dump(all_settings, f)
2023-01-09 17:59:07 +08:00
except:
pass
else:
leagues = all_settings['leagues'].keys()
leagues_info = {}
for league in leagues:
2023-01-09 17:59:07 +08:00
if league == 'PREMIERLEAGUE':
url += 'PREMIERLEAGUE,'
else:
url += league + ','
url = url[:-1] # remove last comma
url += '&apiKey=' + api_key
r = requests.get(url)
all_data = r.json()
for league in all_data.keys():
ten_or_fifteen = slice(None)
events = []
2023-03-23 18:37:10 +08:00
if (league == 'PGA') or (league == 'LPGA') or (league == 'PGA_EU') or (league == 'LIV') or (league == 'F1') or (league == 'NASCAR'):
2023-07-06 15:16:19 +08:00
if time == 'past':
ten_or_fifteen = slice(2)
else:
ten_or_fifteen = slice(3)
2022-03-05 10:37:22 +00:00
else:
2023-01-09 17:59:07 +08:00
ten_or_fifteen = slice(None)
2023-04-17 17:55:53 +08:00
if league == 'UFC':
event = all_data['UFC'][0]
events.append(event)
2023-04-18 15:12:24 +08:00
if time == 'upcoming':
try:
2023-04-18 15:23:24 +08:00
logo_files = []
2023-04-18 15:12:24 +08:00
for each in all_data['UFC'][0]['fights']:
2023-04-25 01:01:05 +08:00
try:
if each['fighter1pic'].split('/')[-1].split('&')[0] not in os.listdir('logos/ufc/'):
urllib.request.urlretrieve(each['fighter1pic'],'logos/ufc/' + each['fighter1pic'].split('/')[-1].split('&')[0])
except:
pass
try:
if each['fighter2pic'].split('/')[-1].split('&')[0] not in os.listdir('logos/ufc/'):
urllib.request.urlretrieve(each['fighter2pic'],'logos/ufc/' + each['fighter2pic'].split('/')[-1].split('&')[0])
except:
pass
try:
logo_files.append(each['fighter2pic'].split('/')[-1].split('&')[0])
except:
pass
try:
logo_files.append(each['fighter1pic'].split('/')[-1].split('&')[0])
except:
pass
2023-04-18 15:12:24 +08:00
#country flags
try:
if each['fighter1country'].split('/')[-1].split('&')[0] not in os.listdir('logos/ufc_countries/'):
urllib.request.urlretrieve(each['fighter1country'], 'logos/ufc_countries/' + each['fighter1country'].split('/')[-1].split('&')[0])
except:
pass
try:
if each['fighter2country'].split('/')[-1].split('&')[0] not in os.listdir('logos/ufc_countries/'):
urllib.request.urlretrieve(each['fighter2country'], 'logos/ufc_countries/' + each['fighter2country'].split('/')[-1].split('&')[0])
except:
pass
2023-04-18 15:12:24 +08:00
for file in os.listdir('logos/ufc/'):
if file not in logo_files:
os.remove('logos/ufc/'+ file)
except:
pass
elif time == 'past':
try:
2023-04-18 15:23:24 +08:00
logo_files = []
2023-04-18 15:12:24 +08:00
for each in all_data['UFC'][0]['fights']:
2023-04-25 01:01:05 +08:00
try:
if each['fighter1pic'].split('/')[-1].split('&')[0] not in os.listdir('logos/ufc_past/'):
urllib.request.urlretrieve(each['fighter1pic'],'logos/ufc_past/' + each['fighter1pic'].split('/')[-1].split('&')[0])
except:
pass
try:
if each['fighter2pic'].split('/')[-1].split('&')[0] not in os.listdir('logos/ufc_past/'):
urllib.request.urlretrieve(each['fighter2pic'],'logos/ufc_past/' + each['fighter2pic'].split('/')[-1].split('&')[0])
except:
pass
try:
logo_files.append(each['fighter2pic'].split('/')[-1].split('&')[0])
except:
pass
try:
logo_files.append(each['fighter1pic'].split('/')[-1].split('&')[0])
except:
pass
2023-04-18 15:12:24 +08:00
#country flags
try:
if each['fighter1country'].split('/')[-1].split('&')[0] not in os.listdir('logos/ufc_countries/'):
urllib.request.urlretrieve(each['fighter1country'], 'logos/ufc_countries/' + each['fighter1country'].split('/')[-1].split('&')[0])
except:
pass
try:
if each['fighter2country'].split('/')[-1].split('&')[0] not in os.listdir('logos/ufc_countries/'):
urllib.request.urlretrieve(each['fighter2country'], 'logos/ufc_countries/' + each['fighter2country'].split('/')[-1].split('&')[0])
except:
pass
2023-04-18 15:12:24 +08:00
for file in os.listdir('logos/ufc_past/'):
if file not in logo_files:
os.remove('logos/ufc_past/'+ file)
except:
pass
2023-04-17 17:55:53 +08:00
else:
for d in all_data[league][ten_or_fifteen]:
event = {}
event['date'] = d['dateEvent']
2023-04-27 18:51:52 +08:00
try:
event['date2'] = d['dateEvent2']
except:
pass
2023-04-17 17:55:53 +08:00
if time == 'live':
event['progess'] = d['strProgress']
event['status'] = d['strStatus']
2023-01-09 17:59:07 +08:00
else:
2023-04-17 17:55:53 +08:00
if (league == 'PGA') or (league == 'LPGA') or (league == 'PGA_EU') or (league == 'LIV') or (league == 'F1') or (league == 'NASCAR'):
event['date'] = d['dateEvent']
2023-04-27 18:51:52 +08:00
try:
event['date2'] = d['dateEvent2']
except:
pass
2023-05-17 12:29:23 +08:00
try:
event['total_yards'] = d['total_yards']
event['shots_par'] = d['shots_par']
event['purse'] = d['purse']
except:
pass
2023-04-17 17:55:53 +08:00
event['event'] = d['strEvent'].replace("\u2019","'")
event['venue'] = d['strVenue'].replace("\u2019","'")
event['city'] = d['strCity'].replace("\u2019","'")
event['country'] = d['strCountry']
event['season'] = d['strSeason']
else:
event['round'] = d['intRound']
event['time'] = d['strTime']
event['home_team'] = d['strHomeTeam']
event['away_team'] = d['strAwayTeam']
if time != 'upcoming':
if (league == 'PGA') or (league == 'LPGA') or (league == 'PGA_EU'):
# event['golf_standings'] = d['strResult']
2023-05-17 12:29:23 +08:00
event['golf_rankings'] = d['player_results']
for player in event['golf_rankings']:
try:
if player['country'].split('/')[-1].split('&')[0] not in os.listdir('logos/ufc_countries/'):
urllib.request.urlretrieve(player['country'], 'logos/ufc_countries/' + player['country'].split('/')[-1].split('&')[0])
except:
pass
# rank = ['n1', 'n2', 'n3', 'n4', 'n5', 'n6', 'n7', 'n8', 'n9', 'n10', 'T1', 'T2', 'T3', 'T4', 'T5',
# 'T6', 'T7', 'T8', 'T9', 'T10']
# def convert(string):
# string = repr(string).replace('/', '')
# li = list(string.split('\\'))
# return li
# str3 = convert(event['golf_standings'])
# players = []
# for each in str3:
# each = each.replace('nT', 'T', 1)
# if each[:2] in rank:
# try:
# first_space = each.find(' ', 1)
# second_space = each.find(' ', 4)
# first_name = each[first_space:second_space].lstrip()
# initial = first_name[0] + '.'
# each = each.replace(first_name,initial)
# except:
# pass
# interator = each.find('-')
# if interator < 0:
# interator = 0
# interator2 = each[interator:interator + 3]
# result = each.split(interator2, 1)[0] + interator2
# players.append(result.rstrip())
# event['golf_standings'] = players
2023-04-17 17:55:53 +08:00
elif (league == 'LIV'):
# event['golf_standings'] = d['strResult']
2023-05-17 12:29:23 +08:00
event['golf_rankings'] = d['player_results']
for player in event['golf_rankings']:
try:
if player['country'].split('/')[-1].split('&')[0] not in os.listdir('logos/ufc_countries/'):
urllib.request.urlretrieve(player['country'], 'logos/ufc_countries/' + player['country'].split('/')[-1].split('&')[0])
except:
pass
# rank = ['n1', 'n2', 'n3', 'n4', 'n5', 'n6', 'n7', 'n8', 'n9', 'n10', 'T1', 'T2', 'T3', 'T4', 'T5',
# 'T6', 'T7', 'T8', 'T9', 'T10']
# def convert(string):
# string = repr(string).replace('/', '')
# li = list(string.split('\\'))
# return li
# try:
# str3 = convert(event['golf_standings'].split('--------------------------------------')[0])
# strTeams = convert(event['golf_standings'].split('--------------------------------------')[1])
# except:
# pass
# players = []
# teams = []
# try:
# for each in str3:
# each = each.replace('nT', 'T', 1)
# if each[:2] in rank:
# try:
# first_space = each.find(' ', 1)
# second_space = each.find(' ', 4)
# first_name = each[first_space:second_space].lstrip()
# initial = first_name[0] + '.'
# each = each.replace(first_name,initial)
# except:
# pass
# interator = each.find('-')
# if interator < 0:
# interator = 0
# interator2 = each[interator:interator + 3]
# result = each.split(interator2, 1)[0] + interator2
# players.append(result.rstrip())
# for each in strTeams:
# each = each.replace('nT', 'T', 1)
# if each[:2] in rank:
# each = each.split('GC')
# score = each[1].rfind(' ')
# score2 = each[1][score:score+4]
# each2 = each[0] + score2
# teams.append(each2)
# except:
# pass
# event['golf_standings'] = [players] + [teams]
2023-04-17 17:55:53 +08:00
else:
event['away_score'] = d['intAwayScore']
event['home_score'] = d['intHomeScore']
2023-04-17 17:55:53 +08:00
events.append(event)
2023-01-09 17:59:07 +08:00
leagues_info[league.upper()] = events
all_settings['leagues'] = leagues_info
2022-04-07 18:35:38 +01:00
with open("csv/{}_games.json".format(time), 'w+') as f:
json.dump(all_settings, f)
2022-10-21 17:12:13 +08:00
except:
pass
2023-03-23 16:30:58 +08:00
2022-03-05 14:03:11 +00:00
def updateSports(api_key, logf):
#read user settings to decide which sprots to update
2022-01-29 09:26:55 +00:00
2022-03-05 14:03:11 +00:00
updateLeagueTables(api_key, logf)
2022-03-05 14:03:11 +00:00
updateLeagueEvents(api_key,'livescore', logf)
updateLeagueEvents(api_key,'past', logf)
updateLeagueEvents(api_key,'upcoming', logf)
def checkStocks(last_update, update_frequency):
NY_time = datetime.now(NY_zone).replace(tzinfo=None)
opening = NY_time.replace(hour=9, minute=30, second=0, microsecond=0).replace(tzinfo=None)
2022-04-07 18:35:38 +01:00
closing = NY_time.replace(hour=16, minute=5, second=0, microsecond=0).replace(tzinfo=None)
f = open('csv/stocks_settings.json', 'r')
all_stocks_settings = json.load(f)
f.close()
stock_info = all_stocks_settings['symbols']
symbols = list(stock_info.keys())
updated = False
diff = (NY_time - last_update).total_seconds()/60 #minutes
if opening < NY_time < closing and datetime.today().weekday() < 5: # we need to do real time updating
if diff >= update_frequency:
updated = True
2022-01-31 19:11:01 +00:00
elif emptyInfo(symbols, stock_info): # if theres any empty stocks
updated = True
2022-01-31 19:11:01 +00:00
else:
# update if last update was before the previous days closing
yday_closing = closing - dt.timedelta(days=1)
yday_str = yday_closing.strftime("%d/%m/%Y %H:%M:%S")
yday_closing = datetime.strptime(yday_str, "%d/%m/%Y %H:%M:%S")
if last_update < yday_closing:
updated = True
2022-01-31 19:11:01 +00:00
return updated
2022-03-05 14:03:11 +00:00
def updateAll(api_key, weather_key, logf):
updateStocks(api_key, logf)
2022-03-01 18:27:45 +00:00
2022-03-05 14:03:11 +00:00
updateCrypto(api_key, logf)
2022-03-01 18:27:45 +00:00
2022-03-06 09:29:42 +00:00
updateForex(api_key, logf)
2022-03-01 18:27:45 +00:00
2022-03-05 14:03:11 +00:00
updateNews(api_key, logf)
2022-03-01 18:27:45 +00:00
2022-03-05 14:03:11 +00:00
updateSports(api_key, logf)
2022-03-01 18:27:45 +00:00
2022-02-21 17:18:45 +00:00
if weather_key:
2022-03-05 14:03:11 +00:00
updateWeather(weather_key, logf)
2023-01-09 17:59:07 +08:00
past_espn_time = True
past_pl_time = True
if __name__ == '__main__':
logf = open("log.txt", "a")
t = time.time()
2023-08-17 21:35:47 +08:00
update_frequencies = {'stocks':2, 'crypto':7, 'forex':60, 'news':120, 'weather': 120, 'sports': 1440, 'commodities': 15, 'indices': 15, 'movies': 1440, 'ipo': 1440, 'prepost': 15, 'economic': 15, 'jokes': 15, 'market': 5} #minutes
NY_zone = pytz.timezone('America/New_York')
2022-03-04 16:37:29 +00:00
CET_zone = pytz.timezone('EST')
NY_time = datetime.now(NY_zone)
CET_time = datetime.now(CET_zone)
NY_str = NY_time.strftime("%d/%m/%Y %H:%M:%S")
CET_str = NY_time.strftime("%d/%m/%Y %H:%M:%S")
#f = open('csv/last_updates.json', 'w+')
#update_times = {'stocks':NY_str, 'crypto':NY_str, 'news':NY_str, 'weather': NY_str, 'forex': CET_str} # all in NY time apart from forex in CET
#json.dump(update_times, f)
#f.close()
2022-01-31 19:11:01 +00:00
f = open('api_keys.txt')
api_keys = f.readlines()
api_key = api_keys[0].strip()
2022-02-26 15:50:10 +00:00
2022-02-24 19:42:33 +00:00
2022-01-31 19:11:01 +00:00
try:
weather_key = api_keys[1].strip()
except Exception as e:
2022-02-21 17:18:45 +00:00
weather_key = False
2023-06-14 16:44:37 +08:00
# logf = open('log.txt', "a")
# exc_type, exc_obj, exc_tb = sys.exc_info()
# fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)[1]
# logf.write(str(e))
# logf.write('. file: ' + fname)
# logf.write('. line: ' + str(exc_tb.tb_lineno))
# logf.write('. type: ' + str(exc_type))
# logf.write('\n ' + "".join(traceback.format_exception(sys.exc_info()[0], sys.exc_info()[1], sys.exc_info()[2])))
# logf.close()
2022-01-31 19:11:01 +00:00
2023-01-09 16:23:25 +08:00
try:
movie_key = open('movie_api_key.txt').readlines()[0]
except Exception as e:
movie_key = False
2022-03-06 09:29:42 +00:00
2023-03-08 15:23:05 +08:00
try:
ipo_key = open('ipo_api_key.txt').readlines()[0]
except Exception as e:
ipo_key = False
t = time.time()
2022-02-28 20:16:31 +00:00
update_processes = []
2022-03-06 09:29:42 +00:00
# try:
# time.sleep(60)
# f = open('csv/last_updates.json', 'r')
# last_updates = json.load(f)
# f.close()
# last_updates['stocks']['force'] = True
# #last_updates['weather']['force'] = True
# f = open('csv/last_updates.json', 'w')
# json.dump(last_updates, f)
# f.close()
# except:
# pass
2022-03-06 09:29:42 +00:00
try:
while True:
2022-03-06 09:29:42 +00:00
try:
f = open('csv/last_updates.json', 'r')
last_updates = json.load(f)
f.close()
except:
2023-04-21 16:46:43 +08:00
last_updates = {"scheduler":{"force": False}, "stocks": {"time": "06/03/2022 04:12:09", "force": True}, "crypto": {"time": "06/03/2022 04:10:39", "force": True},
2022-03-07 17:34:24 +00:00
"news": {"time": "06/03/2022 04:07:09", "force": True}, "weather": {"time": "06/03/2022 04:08:20", "force": True},
"forex": {"time": "06/03/2022 03:54:02", "force": True}, "sports_l": {"time": "06/03/2022 04:10:09", "force": True},
"sports_p": {"time": "06/03/2022 04:10:09", "force": True},
2023-07-12 17:45:58 +08:00
"sports_u": {"time": "06/03/2022 04:10:09", "force": True},"sports_t": {"time": "06/03/2022 04:10:09", "force": True}, "commodities": {"time": "06/03/2022 04:10:09", "force": True}, "indices": {"time": "06/03/2022 04:10:09", "force": True}, "movies": {"time": "06/03/2022 04:10:09", "force": True}, "ipo": {"time": "06/03/2022 04:10:09", "force": True},
2023-08-16 01:32:41 +08:00
"prepost": {"time": "06/03/2022 04:10:09", "force": True}, "economic": {"time": "06/03/2022 04:10:09", "force": True}, "jokes": {"time": "06/03/2022 04:10:09", "force": True}, "market": {"time": "06/03/2022 04:10:09", "force": True}, "sector": {"time": "06/03/2022 04:10:09", "force": True}}
2022-03-06 09:29:42 +00:00
2023-04-21 16:46:43 +08:00
try:
if last_updates['scheduler']['force']:
try:
f = open('csv/scheduler.json','r')
schedules = json.load(f)
2023-04-21 16:56:53 +08:00
f.close()
2023-04-21 19:10:21 +08:00
shutdown_schedule_hour = schedules['shutdown']['hour']
shutdown_schedule_minute = schedules['shutdown']['minute']
reboot_schedule_hour = schedules['reboot']['hour']
reboot_schedule_minute = schedules['reboot']['minute']
2023-04-21 16:46:43 +08:00
timezone = schedules['timezone']
shutdown_enabled = schedules['shutdown']['enabled']
reboot_enabled = schedules['reboot']['enabled']
except:
2023-04-21 19:10:21 +08:00
shutdown_schedule_hour = "00"
shutdown_schedule_minute = "00"
reboot_schedule_hour = "00"
reboot_schedule_minute = "00"
2023-04-21 16:46:43 +08:00
timezone = "GMT"
shutdown_enabled = False
reboot_enabled = False
2023-04-21 19:26:23 +08:00
last_updates['scheduler']['force'] = False
2023-04-21 16:46:43 +08:00
except:
pass
#SHUTDOWN
try:
2023-04-21 19:10:21 +08:00
if datetime.now(pytz.timezone(timezone)).strftime("%H:%M") == shutdown_schedule_hour+':'+shutdown_schedule_minute and shutdown_enabled:
2023-04-21 16:46:43 +08:00
os.system('sudo shutdown now')
except:
pass
#REBOOT
try:
2023-04-21 19:10:21 +08:00
if datetime.now(pytz.timezone(timezone)).strftime("%H:%M") == reboot_schedule_hour+':'+reboot_schedule_minute and reboot_enabled:
2023-04-21 16:46:43 +08:00
os.system('sudo reboot')
except:
pass
NY_time = datetime.now(NY_zone).replace(tzinfo=None)
2022-03-06 09:29:42 +00:00
#msg = getInput()
2022-03-01 18:27:45 +00:00
NY_time = datetime.now(NY_zone).replace(tzinfo=None)
#stocks
2022-03-06 09:29:42 +00:00
stock_time = datetime.strptime(last_updates['stocks']['time'], "%d/%m/%Y %H:%M:%S")
stock_frequency = update_frequencies['stocks']
2022-02-28 20:57:46 +00:00
diff = (NY_time - stock_time).total_seconds()/60 #minutes
NY_time = datetime.now(NY_zone).replace(tzinfo=None)
opening = NY_time.replace(hour=9, minute=30, second=0, microsecond=0).replace(tzinfo=None)
2022-04-07 18:35:38 +01:00
closing = NY_time.replace(hour=16, minute=5, second=0, microsecond=0).replace(tzinfo=None)
stock_open = opening < NY_time < closing and datetime.today().weekday() <= 4
if last_updates['stocks']['force'] or (diff >= update_frequencies['stocks'] and stock_open):# or msg == 's':
stock_time = NY_time.strftime("%d/%m/%Y %H:%M:%S")
2022-03-06 09:29:42 +00:00
last_updates['stocks']['time'] = stock_time
last_updates['stocks']['force'] = False
2022-02-28 20:16:31 +00:00
#updateStocks(api_key)
2022-03-05 14:03:11 +00:00
update_process = Process(target = updateStocks, args = (api_key,logf))
2022-02-28 20:16:31 +00:00
update_process.start()
update_processes.append(update_process)
2023-03-29 16:46:13 +08:00
NY_time1 = datetime.now(NY_zone).replace(tzinfo=None)
NY_time2 = datetime.now(NY_zone).replace(tzinfo=None)
#prepost
preopen = NY_time1.replace(hour=4, minute=0, second=0, microsecond=0).replace(tzinfo=None)
preclose = NY_time1.replace(hour=9, minute=30, second=0, microsecond=0).replace(tzinfo=None)
postopen = NY_time2.replace(hour=16, minute=0, second=0, microsecond=0).replace(tzinfo=None)
postclose = NY_time2.replace(hour=20, minute=20, second=0, microsecond=0).replace(tzinfo=None)
prepost_frequency = update_frequencies['prepost']
prepost_time = datetime.strptime(last_updates['prepost']['time'], "%d/%m/%Y %H:%M:%S")
pre_open = preopen < NY_time1 < preclose and NY_time1.weekday() <= 4
post_open = postopen < NY_time2 < postclose and NY_time2.weekday() <= 4
diff1 = (NY_time1 - prepost_time).total_seconds()/60 #minutes
diff2 = (NY_time2 - prepost_time).total_seconds()/60 #minutes
if (last_updates['prepost']['force']) or (diff1 >= update_frequencies['prepost'] and pre_open) or (diff2 >= update_frequencies['prepost'] and post_open):
prepost_time = NY_time1.strftime("%d/%m/%Y %H:%M:%S")
last_updates['prepost']['time'] = prepost_time
last_updates['prepost']['force'] = False
update_process = Process(target = updateStocksPrePost, args = (api_key,logf))
update_process.start()
update_processes.append(update_process)
# crypto
2022-03-06 09:29:42 +00:00
crypto_time = datetime.strptime(last_updates['crypto']['time'], "%d/%m/%Y %H:%M:%S")
NY_time = datetime.now(NY_zone).replace(tzinfo=None)
diff = (NY_time - crypto_time).total_seconds()/60 #minutes
2023-06-14 16:44:37 +08:00
2022-03-06 09:29:42 +00:00
if last_updates['crypto']['force'] or diff >= update_frequencies['crypto']:# or msg == 'c':
crypto_time = NY_time.strftime("%d/%m/%Y %H:%M:%S")
2022-03-06 09:29:42 +00:00
#updateCrypto(api_key, logf)
last_updates['crypto']['time'] = crypto_time
last_updates['crypto']['force'] = False
update_process = Process(target = updateCrypto, args = (api_key,logf))
update_process.start()
update_processes.append(update_process)
2022-06-13 01:19:14 +08:00
2023-06-14 16:44:37 +08:00
2022-06-13 01:19:14 +08:00
# commodities
commodities_time = datetime.strptime(last_updates['commodities']['time'], "%d/%m/%Y %H:%M:%S")
2023-06-14 16:44:37 +08:00
2022-06-13 01:19:14 +08:00
NY_time = datetime.now(NY_zone).replace(tzinfo=None)
diff = (NY_time - commodities_time).total_seconds()/60 #minutes
2023-06-14 16:44:37 +08:00
2022-06-13 01:19:14 +08:00
if last_updates['commodities']['force'] or diff >= update_frequencies['commodities']:# or msg == 'c':
commodities_time = NY_time.strftime("%d/%m/%Y %H:%M:%S")
#updateCrypto(api_key, logf)
2023-06-14 16:44:37 +08:00
2022-06-13 01:19:14 +08:00
last_updates['commodities']['time'] = commodities_time
last_updates['commodities']['force'] = False
update_process = Process(target = updateCommodities, args = (api_key,logf))
update_process.start()
update_processes.append(update_process)
2023-06-14 16:44:37 +08:00
# economic calendar
economic_time = datetime.strptime(last_updates['economic']['time'], "%d/%m/%Y %H:%M:%S")
NY_time = datetime.now(NY_zone).replace(tzinfo=None)
diff = (NY_time - economic_time).total_seconds()/60 #minutes
if last_updates['economic']['force'] or diff >= update_frequencies['economic']:# or msg == 'c':
economic_time = NY_time.strftime("%d/%m/%Y %H:%M:%S")
last_updates['economic']['time'] = economic_time
last_updates['economic']['force'] = False
update_process = Process(target = updateEconomic, args = (api_key,logf))
update_process.start()
update_processes.append(update_process)
2023-07-12 17:45:58 +08:00
2023-08-08 18:30:48 +08:00
# market
market_time = datetime.strptime(last_updates['market']['time'], "%d/%m/%Y %H:%M:%S")
NY_time = datetime.now(NY_zone).replace(tzinfo=None)
diff = (NY_time - market_time).total_seconds()/60 #minutes
NY_time = datetime.now(NY_zone).replace(tzinfo=None)
opening = NY_time.replace(hour=9, minute=30, second=0, microsecond=0).replace(tzinfo=None)
2023-08-15 19:31:21 +08:00
closing = NY_time.replace(hour=16, minute=20, second=0, microsecond=0).replace(tzinfo=None)
2023-08-08 18:30:48 +08:00
stock_open = opening < NY_time < closing and datetime.today().weekday() <= 4
2023-08-16 01:32:41 +08:00
if last_updates['market']['force'] or (diff >= update_frequencies['market'] and stock_open):# or msg == 'c':
2023-08-08 18:30:48 +08:00
market_time = NY_time.strftime("%d/%m/%Y %H:%M:%S")
last_updates['market']['time'] = market_time
last_updates['market']['force'] = False
2023-08-14 18:31:07 +08:00
last_updates['sector']['time'] = market_time
last_updates['sector']['force'] = False
2023-08-08 18:30:48 +08:00
update_process = Process(target = updateMarket, args = (api_key,logf))
update_process.start()
update_processes.append(update_process)
2023-07-12 17:45:58 +08:00
2023-08-08 18:30:48 +08:00
2023-08-14 18:31:07 +08:00
2023-07-12 17:45:58 +08:00
# jokes
jokes_time = datetime.strptime(last_updates['jokes']['time'], "%d/%m/%Y %H:%M:%S")
NY_time = datetime.now(NY_zone).replace(tzinfo=None)
diff = (NY_time - jokes_time).total_seconds()/60 #minutes
if last_updates['jokes']['force'] or diff >= update_frequencies['jokes']:# or msg == 'c':
jokes_time = NY_time.strftime("%d/%m/%Y %H:%M:%S")
last_updates['jokes']['time'] = jokes_time
last_updates['jokes']['force'] = False
update_process = Process(target = updateJokes, args = (api_key,logf))
update_process.start()
update_processes.append(update_process)
2023-06-14 16:44:37 +08:00
2022-10-06 13:00:59 +08:00
# indices
indices_time = datetime.strptime(last_updates['indices']['time'], "%d/%m/%Y %H:%M:%S")
2023-06-14 16:44:37 +08:00
2022-10-06 13:00:59 +08:00
NY_time = datetime.now(NY_zone).replace(tzinfo=None)
diff = (NY_time - indices_time).total_seconds()/60 #minutes
2023-06-14 16:44:37 +08:00
2022-10-06 13:00:59 +08:00
if last_updates['indices']['force'] or diff >= update_frequencies['indices']:# or msg == 'c':
indices_time = NY_time.strftime("%d/%m/%Y %H:%M:%S")
last_updates['indices']['time'] = indices_time
last_updates['indices']['force'] = False
update_process = Process(target = updateIndices, args = (api_key,logf))
update_process.start()
update_processes.append(update_process)
2023-06-14 16:44:37 +08:00
2023-01-09 16:23:25 +08:00
# movies
movies_time = datetime.strptime(last_updates['movies']['time'], "%d/%m/%Y %H:%M:%S")
2023-06-14 16:44:37 +08:00
2023-01-09 16:23:25 +08:00
NY_time = datetime.now(NY_zone).replace(tzinfo=None)
diff = (NY_time - movies_time).total_seconds()/60 #minutes
2023-06-14 16:44:37 +08:00
2023-01-09 16:23:25 +08:00
if last_updates['movies']['force'] or diff >= update_frequencies['movies']:
movies_time = NY_time.strftime("%d/%m/%Y %H:%M:%S")
last_updates['movies']['time'] = movies_time
last_updates['movies']['force'] = False
update_process = Process(target = updateMovies, args = (movie_key,logf))
update_process.start()
update_processes.append(update_process)
2023-03-08 15:25:34 +08:00
# ipos
ipo_time = datetime.strptime(last_updates['ipo']['time'], "%d/%m/%Y %H:%M:%S")
2023-06-14 16:44:37 +08:00
2023-03-08 15:25:34 +08:00
NY_time = datetime.now(NY_zone).replace(tzinfo=None)
diff = (NY_time - ipo_time).total_seconds()/60 #minutes
2023-06-14 16:44:37 +08:00
2023-03-08 15:25:34 +08:00
if last_updates['ipo']['force'] or diff >= update_frequencies['ipo']:
ipo_time = NY_time.strftime("%d/%m/%Y %H:%M:%S")
last_updates['ipo']['time'] = ipo_time
last_updates['ipo']['force'] = False
update_process = Process(target = updateIpo, args = (ipo_key,logf))
update_process.start()
update_processes.append(update_process)
# weather
2022-03-06 09:29:42 +00:00
weather_time = datetime.strptime(last_updates['weather']['time'], "%d/%m/%Y %H:%M:%S")
2023-06-14 16:44:37 +08:00
NY_time = datetime.now(NY_zone).replace(tzinfo=None)
diff = (NY_time - weather_time).total_seconds()/60 #minutes
2022-03-06 09:29:42 +00:00
if last_updates['weather']['force'] or diff >= update_frequencies['weather']:# or msg == 'w':
weather_time = NY_time.strftime("%d/%m/%Y %H:%M:%S")
2022-02-28 20:16:31 +00:00
#updateWeather(weather_key)
2022-03-06 09:29:42 +00:00
last_updates['weather']['time'] = weather_time
last_updates['weather']['force'] = False
2022-03-05 14:03:11 +00:00
update_process = Process(target = updateWeather, args = (weather_key,logf))
2022-02-28 20:16:31 +00:00
update_process.start()
update_processes.append(update_process)
# news
2022-03-06 09:29:42 +00:00
news_time = datetime.strptime(last_updates['news']['time'], "%d/%m/%Y %H:%M:%S")
NY_time = datetime.now(NY_zone).replace(tzinfo=None)
diff = (NY_time - news_time).total_seconds()/60 #minutes
2022-03-06 09:29:42 +00:00
if last_updates['news']['force'] or diff >= update_frequencies['news']:# or msg == 'n':
news_time = NY_time.strftime("%d/%m/%Y %H:%M:%S")
2022-02-28 20:16:31 +00:00
#updateNews(api_key)
2022-03-06 09:29:42 +00:00
last_updates['news']['time'] = news_time
last_updates['news']['force'] = False
2022-03-05 14:03:11 +00:00
update_process = Process(target = updateNews, args = (api_key,logf))
2022-02-28 20:16:31 +00:00
update_process.start()
update_processes.append(update_process)
2022-03-07 17:34:24 +00:00
# sports upcoming
sports_time = datetime.strptime(last_updates['sports_u']['time'], "%d/%m/%Y %H:%M:%S")
NY_time = datetime.now(NY_zone).replace(tzinfo=None)
diff = (NY_time - sports_time).total_seconds()/60 #minutes
2022-03-07 17:34:24 +00:00
if last_updates['sports_u']['force'] or diff >= update_frequencies['sports']:# or msg == 'S':
sports_time = NY_time.strftime("%d/%m/%Y %H:%M:%S")
2022-02-28 20:16:31 +00:00
#updateSports(api_key)
2022-03-07 17:34:24 +00:00
last_updates['sports_u']['time'] = sports_time
last_updates['sports_u']['force'] = False
update_process = Process(target = updateLeagueEvents, args = (api_key,'upcoming',logf))
2022-02-28 20:16:31 +00:00
update_process.start()
update_processes.append(update_process)
2022-03-07 17:34:24 +00:00
# sports live
sports_time = datetime.strptime(last_updates['sports_l']['time'], "%d/%m/%Y %H:%M:%S")
NY_time = datetime.now(NY_zone).replace(tzinfo=None)
2023-01-09 17:59:07 +08:00
espn_time = "17:00Z"
espn_time_est = "12:00"
# if datetime.now(pytz.utc).strftime("%H:%MZ") < espn_time:
if datetime.now(pytz.timezone('America/New_York')).strftime("%H:%M") < espn_time_est:
past_espn_time = True
if last_updates['sports_l']['force'] or (datetime.now(pytz.timezone('America/New_York')).strftime("%H:%M") >= espn_time_est and past_espn_time):# or msg == 'S':
# if last_updates['sports_l']['force'] or (datetime.now(pytz.utc).strftime("%H:%MZ") >= espn_time and past_espn_time):# or msg == 'S':
2022-03-07 17:34:24 +00:00
sports_time = NY_time.strftime("%d/%m/%Y %H:%M:%S")
last_updates['sports_l']['time'] = sports_time
last_updates['sports_l']['force'] = False
2023-01-09 17:59:07 +08:00
past_espn_time = False
2022-03-07 17:34:24 +00:00
update_process = Process(target = updateLeagueEvents, args = (api_key, 'livescore',logf))
update_process.start()
update_processes.append(update_process)
2023-01-09 17:59:07 +08:00
#sports live (premier league)
pl_time = "12:00Z"
NY_time = datetime.now(NY_zone).replace(tzinfo=None)
sports_time = datetime.strptime(last_updates['sports_l']['time'], "%d/%m/%Y %H:%M:%S")
if datetime.now(pytz.utc).strftime("%H:%MZ") < pl_time:
past_pl_time = True
if datetime.now(pytz.utc).strftime("%H:%MZ") >= pl_time and past_pl_time:# or msg == 'S':
sports_time = NY_time.strftime("%d/%m/%Y %H:%M:%S")
past_pl_time = False
last_updates['sports_l']['time'] = sports_time
last_updates['sports_l']['force'] = False
update_process = Process(target = updatePLtime)
update_process.start()
update_processes.append(update_process)
2022-03-07 17:34:24 +00:00
# sports past
sports_time = datetime.strptime(last_updates['sports_p']['time'], "%d/%m/%Y %H:%M:%S")
NY_time = datetime.now(NY_zone).replace(tzinfo=None)
diff = (NY_time - sports_time).total_seconds()/60 #minutes
if last_updates['sports_p']['force'] or diff >= update_frequencies['sports']:# or msg == 'S':
sports_time = NY_time.strftime("%d/%m/%Y %H:%M:%S")
#updateSports(api_key)
last_updates['sports_p']['time'] = sports_time
last_updates['sports_p']['force'] = False
update_process = Process(target = updateLeagueEvents, args = (api_key,'past',logf))
update_process.start()
update_processes.append(update_process)
# sports table
sports_time = datetime.strptime(last_updates['sports_t']['time'], "%d/%m/%Y %H:%M:%S")
NY_time = datetime.now(NY_zone).replace(tzinfo=None)
diff = (NY_time - sports_time).total_seconds()/60 #minutes
if last_updates['sports_t']['force'] or diff >= update_frequencies['sports']:# or msg == 'S':
sports_time = NY_time.strftime("%d/%m/%Y %H:%M:%S")
#updateSports(api_key)
last_updates['sports_t']['time'] = sports_time
last_updates['sports_t']['force'] = False
update_process = Process(target = updateLeagueTables, args = (api_key,logf))
update_process.start()
update_processes.append(update_process)
#forex updates once every 24hours at 1700 CET
# update if last update was before the previous days closing
2022-03-06 09:29:42 +00:00
forex_time = datetime.strptime(last_updates['forex']['time'], "%d/%m/%Y %H:%M:%S")
2022-03-04 16:32:41 +00:00
CET_time = datetime.now(CET_zone).replace(tzinfo=None)
yday_update = (CET_time.replace(hour=17, minute=00, second=0, microsecond=0) - dt.timedelta(days=1)).replace(tzinfo=None)
diff = (CET_time.replace(tzinfo=None) - forex_time).total_seconds()/60
opening = CET_time.replace(hour=17, minute=0, second=0, microsecond=0).replace(tzinfo=None)
#forex updates between 5pm sunday and 5pm friday every hour
forex_open = datetime.today().weekday() < 4 or (datetime.today().weekday() == 6 and CET_time > opening) or (datetime.today().weekday() == 4 and CET_time < opening)
2022-03-06 09:29:42 +00:00
if last_updates['forex']['force'] or (diff >= update_frequencies['forex'] and forex_open):# or msg == 'f':
forex_time = CET_time.strftime("%d/%m/%Y %H:%M:%S")
2022-03-06 09:29:42 +00:00
last_updates['forex']['time'] = forex_time
last_updates['forex']['force'] = False
2022-02-28 20:16:31 +00:00
#updateForex(api_key)
2022-03-05 14:03:11 +00:00
update_process = Process(target = updateForex, args = (api_key,logf))
2022-02-28 20:16:31 +00:00
update_process.start()
update_processes.append(update_process)
2022-03-06 09:29:42 +00:00
f = open('csv/last_updates.json', 'w+')
json.dump(last_updates, f)
f.close()
2022-02-28 20:16:31 +00:00
for process in update_processes:
if not process.is_alive():
process.join()
process.terminate()
2022-03-05 14:03:11 +00:00
update_processes.remove(process)
2022-04-07 18:35:38 +01:00
2022-03-06 09:29:42 +00:00
time.sleep(10)
2022-10-21 17:12:13 +08:00
except:
pass
# logf = open('log.txt', "a")
# exc_type, exc_obj, exc_tb = sys.exc_info()
# fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)[1]
# logf.write(str(e))
# logf.write('. file: ' + fname)
# logf.write('. line: ' + str(exc_tb.tb_lineno))
# logf.write('. type: ' + str(exc_type))
# logf.write('\n ' + "".join(traceback.format_exception(sys.exc_info()[0], sys.exc_info()[1], sys.exc_info()[2])))
# logf.close()