fintic-tracker/api_caller.py

469 lines
15 KiB
Python
Raw Normal View History

2021-05-05 15:22:01 +00:00
import finnhub
import time
import csv
2021-05-05 19:26:56 +00:00
import pytz
2021-06-09 18:06:21 +00:00
from datetime import datetime, timedelta
2021-05-27 19:10:57 +00:00
import json
2021-05-06 19:59:27 +00:00
import datetime as dt
2021-05-27 19:10:57 +00:00
import sys, os, base64, hashlib, hmac, select
2021-05-08 11:10:05 +00:00
import requests
2021-05-14 12:02:22 +00:00
from pycoingecko import CoinGeckoAPI
2021-05-21 13:24:37 +00:00
from newsapi import NewsApiClient
2021-05-27 19:10:57 +00:00
def getInput(Block=False):
if Block or select.select([sys.stdin], [], [], 0) == ([sys.stdin], [], []):
msg = sys.stdin.read(1)
#sys.stdin.flush()
else:
msg = ''
return msg
2021-05-05 19:26:56 +00:00
2021-05-14 12:02:22 +00:00
def readCSV(file_path, max_stocks):
2021-05-06 19:59:27 +00:00
symbols = []
stock_info = {}
2021-05-14 12:02:22 +00:00
f = open(file_path, 'r')
2021-05-06 19:59:27 +00:00
CSV = csv.reader(f)
next(CSV)
2021-05-07 18:39:42 +00:00
i = 0
2021-05-06 19:59:27 +00:00
for row in CSV:
2021-05-07 18:39:42 +00:00
if i < max_stocks:
i += 1
try:
symbol, current_price, opening_price = row
symbols.append(symbol)
stock_info[symbol] = [current_price, opening_price]
except:
symbol = row[0]
symbols.append(symbol)
stock_info[symbol] = []
else:
print('max stocks exceeded')
break
2021-05-06 19:59:27 +00:00
f.close()
return symbols, stock_info
2021-05-24 19:59:42 +00:00
def readCryptoCSV(file_path, max_stocks):
symbols = []
names = []
stock_info = {}
f = open(file_path, 'r')
CSV = csv.reader(f)
next(CSV)
i = 0
unique_bases = []
2021-05-24 19:59:42 +00:00
for row in CSV:
print(row)
if i < max_stocks:
i += 1
try:
symbol, name, base, current_price, opening_price = row
2021-05-24 19:59:42 +00:00
symbols.append(symbol)
names.append(name)
stock_info[name] = [symbol, base, current_price, opening_price]
if base not in unique_bases:
unique_bases.append(base)
2021-05-24 19:59:42 +00:00
except:
symbol, name, base = row
if base not in unique_bases:
unique_bases.append(base)
2021-05-24 19:59:42 +00:00
symbols.append(symbol)
names.append(name)
stock_info[name] = [symbol, base]
2021-05-24 19:59:42 +00:00
else:
print('max stocks exceeded')
break
f.close()
return names, stock_info, unique_bases
2021-05-06 19:59:27 +00:00
def emptyInfo(symbols, stock_info):
update = False
for symbol in symbols:
if len(stock_info[symbol]) == 1: # stock with no info
update = True
return update
def updateUpdate(NY_time):
NY_str = NY_time.strftime("%d/%m/%Y %H:%M:%S")
f = open('csv/last_update.csv', 'w+')
f.write(NY_str + '\n')
f.close()
2021-05-05 19:26:56 +00:00
2021-05-06 19:59:27 +00:00
def updateStockPrices(symbols):
try:
2021-05-08 11:10:05 +00:00
quotes = [finnhubClient.quote(symbol) for symbol in symbols]
current_prices = [quote['c'] for quote in quotes]
opening_prices = [quote['o'] for quote in quotes]
2021-05-14 12:02:22 +00:00
2021-05-06 19:59:27 +00:00
CSV = open('csv/tickers.csv', 'w+')
CSV.write('name,current,opening\n')
for i, symbol in enumerate(symbols):
2021-05-07 18:39:42 +00:00
2021-05-06 19:59:27 +00:00
CSV.write(symbol + ',' + str(current_prices[i]) + ',' + str(opening_prices[i]) + '\n')
CSV.close()
print('API called successfully')
except Exception as e:
print("Could not fetch data - API CALLS REACHED? - Will display old image")
print(e)
apiCalledError = True
2021-05-08 11:10:05 +00:00
def updateStockPricesIEX(symbols):
symbols_str = ','.join(symbols)
method = 'GET'
host = 'https://cloud.iexapis.com/stable'
lastEndpoint = '/tops/last'
querystring = '?symbols=' + symbols_str +'&token='+iexAPIkey
last_request_url = host + lastEndpoint + querystring
print('\nBEGIN REQUEST++++++++++++++++++++++++++++++++++++')
print('Request URL = ' + last_request_url)
last_response = requests.get(last_request_url)
if last_response.status_code == 200:
print('last success')
current_prices = []
for stock in last_response.json():
current_prices.append(stock['price'])
for symbol in symbols:
symbol = 'MSFT'
method = 'GET'
host = 'https://cloud.iexapis.com/stable'
lastEndpoint = '/tops/last'
intradayEndpoint = '/stock/'+ symbol+ '/intraday-prices'
querystring = '?chartIEXOnly=true&token='+iexAPIkey
intraday_request_url = host + intradayEndpoint + querystring
print('\nBEGIN REQUEST++++++++++++++++++++++++++++++++++++')
print('Request URL = ' + intraday_request_url)
intraday_response = requests.get(intraday_request_url)
print('\nRESPONSE++++++++++++++++++++++++++++++++++++')
print('Response code: %d\n' % intraday_response.status_code)
print(intraday_response.text)
for time_point in intraday_response.json():
print(time_point['date'])
print(time_point['open'])
CSV = open('csv/tickers.csv', 'w+')
CSV.write('name,current,opening\n')
for i, symbol in enumerate(symbols):
CSV.write(symbol + ',' + str(current_prices[i]) + ',' + str(opening_prices[i]) + '\n')
CSV.close()
2021-05-14 12:02:22 +00:00
def updateCrypto(coins, coin_info, unique_bases):
response = coingecko_client.get_price(ids=','.join(coins), vs_currencies = unique_bases, include_24hr_change=True)
2021-05-14 12:02:22 +00:00
CSV = open('csv/crypto.csv', 'w+')
CSV.write('symbol,name,base,current,24hr change\n')
2021-05-14 12:02:22 +00:00
for coin in coins:
info = coin_info[coin]
print(info)
CSV.write(info[0] + ',' + coin + ',' + info[1] + ',' +str(response[coin][info[1]]) + ',' + str(response[coin]['usd_24h_change']) + '\n')
2021-05-14 12:02:22 +00:00
CSV.close()
2021-05-21 13:24:37 +00:00
def updateNews():
2021-05-27 19:10:57 +00:00
try:
#load user settings
settings = json.load(open('csv/news_settings.json', 'r'))
2021-06-14 19:36:17 +00:00
2021-05-27 19:10:57 +00:00
print(settings)
headlines = newsapi.get_top_headlines(**settings)
except:
#if no settings just get top headlines
headlines = newsapi.get_top_headlines()
headline_titles = [headline['title'] for headline in headlines['articles']]
headline_sources = [headline['source']['name'] for headline in headlines['articles']]
headline_times = [headline['publishedAt']for headline in headlines['articles']]
2021-05-21 13:24:37 +00:00
CSV = open('csv/news.csv', 'w+')
2021-05-27 19:10:57 +00:00
CSV.write('headline,source,date,time\n')
2021-05-21 13:24:37 +00:00
2021-05-27 19:10:57 +00:00
for i, title in enumerate(headline_titles):
date, time = headline_times[i].split('T')
CSV.write(title.replace(',', '^') + ',' + headline_sources[i] + ',' + date + ',' + time + '\n')
2021-05-21 13:24:37 +00:00
CSV.close()
2021-06-09 18:06:21 +00:00
def updateWeather(api_key):
f = open( "csv/weather_location.txt", 'r' )
location = f.read()
f.close()
2021-06-02 20:16:15 +00:00
url = "https://api.openweathermap.org/data/2.5/weather?q={}&units=metric&appid={}".format(location, api_key)
r = requests.get(url)
weather = r.json()
2021-06-03 20:56:25 +00:00
print(weather)
2021-06-02 20:16:15 +00:00
current_weather = {}
coords = weather['coord']
lat = coords['lat']
lon = coords['lon']
url = 'https://api.openweathermap.org/data/2.5/onecall?lat={}&units=metric&lon={}&appid={}'.format(lat, lon, api_key)
r = requests.get(url)
current_weather['main_weather'] = weather['weather'][0]['main']
current_weather['description'] = weather['weather'][0]['description']
current_weather['temp'] = weather['main']['temp']
current_weather['min_temp'] = weather['main']['temp_min']
current_weather['max_temp'] = weather['main']['temp_max']
current_weather['feels_like'] = weather['main']['feels_like']
current_weather['humidity'] = weather['main']['humidity']
current_weather['clouds'] = weather['clouds']['all']
current_weather['wind_speed'] = weather['wind']['speed']
current_weather['wind_direction'] = weather['wind']['deg']
current_weather['visibility'] = weather['visibility']
current_weather['uv'] = r.json()['current']['uvi']
2021-06-08 20:16:08 +00:00
current_weather['rain_chance'] = r.json()['hourly'][0]['pop']
2021-06-02 20:16:15 +00:00
json.dump( current_weather, open( "csv/current_weather.json", 'w+' ))
daily_weather = []
daily = r.json()['daily']
for day in daily:
dct = {}
dct['main_weather'] = day['weather'][0]['main']
dct['description'] = day['weather'][0]['description']
dct['min_temp'] = day['temp']['min']
2021-06-07 20:03:03 +00:00
dct['max_temp'] = day['temp']['max']
2021-06-02 20:16:15 +00:00
daily_weather.append(dct)
2021-06-08 20:16:08 +00:00
2021-06-02 20:16:15 +00:00
json.dump( daily_weather, open( "csv/daily_weather.json", 'w+' ))
2021-06-09 18:06:21 +00:00
def updateCurrencies(api_key):
base = 'USD'
yesterday = datetime.now() - timedelta(1)
str_tod = datetime.strftime(datetime.now(), '%Y-%m-%d')
str_yest = datetime.strftime(yesterday, '%Y-%m-%d')
url = 'https://api.frankfurter.app/{}..{}?from={}'.format(str_yest, str_tod, base)
r = requests.get(url)
all_data = r.json()
currencies = ['AUD', 'CAD', 'CHF', 'EUR', 'GBP', 'JPY', 'NZD']
c_dict = {}
print(all_data)
for curr in currencies:
current = all_data['rates'][str_tod][curr]
yesterday = all_data['rates'][str_yest][curr]
change = current - yesterday
c_dict[curr] = [current, yesterday]
print(c_dict)
json.dump([base, c_dict], open( "csv/currency.json", 'w+' ))
2021-06-14 19:36:17 +00:00
def updateSports():
url = 'https://www.thesportsdb.com/api/v1/json/1/lookuptable.php?l=4328&s=2020-2021' # premier league table
'https://www.thesportsdb.com/api/v1/json/1/eventsnext.php?id=133602' # next five events by team ID (paid) use this for upcoming team games
'https://www.thesportsdb.com/api/v2/json/APIKEY/livescore.php?l=4380' #live scores
r = requests.get(url)
all_data = r.json()
print([all_data['table'][i]['intRank'] for i in range(len(all_data['table']))])
premier_teams = []
print(all_data['table'][0].keys())
for i in range(len(all_data['table'])):
team = {}
team['name'] = all_data['table'][i]['strTeam']
team['wins'] = all_data['table'][i]['intWin']
team['loss'] = all_data['table'][i]['intLoss']
team['draw'] = all_data['table'][i]['intDraw']
team['played'] = all_data['table'][i]['intPlayed']
team['standing'] = all_data['table'][i]['intRank']
team['points'] = all_data['table'][i]['intPoints']
premier_teams.append(team)
json.dump(premier_teams, open( "csv/sports/premier_league/team_stats.json", 'w+' ))
url = 'https://www.thesportsdb.com/api/v1/json/1/eventsseason.php?id=4328&s=2020-2021' # all events in premier league
r = requests.get(url)
all_data = r.json()
print()
print(all_data['events'][0])
#print([all_data['events'][i]['strTimestamp'] for i in range(len(all_data['events']))])
events = []
for i in range(len(all_data['events'][i])):
event = {}
event['date'] = all_data['events'][i]['dateEvent']
event['time'] = all_data['events'][i]['strTime']
event['home_team'] = all_data['events'][i]['strHomeTeam']
event['home_score'] = all_data['events'][i]['intHomeScore']
event['away_team'] = all_data['events'][i]['strAwayTeam']
event['away_score'] = all_data['events'][i]['intAwayScore']
event['round'] = all_data['events'][i]['intRound']
events.append(event)
json.dump(events, open( "csv/sports/premier_league/past_games.json", 'w+' ))
url ='https://www.thesportsdb.com/api/v1/json/1/eventsnextleague.php?id=4328' #next 15 events on the league (premium only)
2021-05-06 19:59:27 +00:00
if __name__ == '__main__':
2021-06-14 19:36:17 +00:00
2021-05-21 13:24:37 +00:00
newsapi = NewsApiClient(api_key='cf08652bd17647b89aaf469a1a8198a9')
2021-05-08 11:10:05 +00:00
finnhubAPIkey = "c24qddqad3ickpckgg80" #Finnhub
finnhubsandboxAPIkey = "sandbox_c24qddqad3ickpckgg8g" #Finnhub
2021-06-02 20:16:15 +00:00
stock_time = 2 #minutes
news_time = 30 #minutes
weather_time = 10 #minutes
# TODO: different update times for stocks, weather and news
2021-05-08 11:10:05 +00:00
finnhubClient = finnhub.Client(api_key=finnhubAPIkey)
max_stocks = 200
2021-05-07 18:39:42 +00:00
iexAPIkey = 'pk_68ef6a15902c41f887f0b544a0ca17cf' #IEX
iexSandboxAPIkey = 'Tpk_0078dff413ef4f979137f7111452dc4b'
2021-05-08 11:10:05 +00:00
#updateStockPricesIEX(symbols)
2021-05-05 19:26:56 +00:00
2021-05-08 11:10:05 +00:00
finnhubClient = finnhub.Client(api_key=finnhubAPIkey)
2021-05-14 12:02:22 +00:00
coingecko_client = CoinGeckoAPI()
2021-05-06 19:59:27 +00:00
NY_zone = pytz.timezone('America/New_York')
2021-05-05 19:26:56 +00:00
2021-05-06 19:59:27 +00:00
NY_time = datetime.now(NY_zone)
opening = NY_time.replace(hour=9, minute=30, second=0, microsecond=0)
closing = NY_time.replace(hour=16, minute=0, second=0, microsecond=0)
2021-05-05 19:26:56 +00:00
NY_time = datetime.now(NY_zone)
2021-05-23 09:34:06 +00:00
symbols, stock_info = readCSV('csv/tickers.csv', max_stocks)
updateStockPrices(symbols)
updateUpdate(NY_time)
2021-05-27 19:10:57 +00:00
coins, coin_info, unique_bases = readCryptoCSV('csv/crypto.csv', max_stocks)
2021-06-02 20:16:15 +00:00
2021-06-09 18:06:21 +00:00
weather_key = 'bd5d5096a5ba30bbcfb57ead42ab3fee'
currency_key = '862dbb6d1101ce0c5136'
updateCurrencies(currency_key)
2021-06-02 20:16:15 +00:00
2021-06-09 18:06:21 +00:00
updateWeather( weather_key)
2021-05-27 19:10:57 +00:00
updateCrypto(coins, coin_info, unique_bases)
updateNews()
t = time.time()
logf = open("log.txt", "w")
try:
while True:
msg = getInput()
2021-06-02 20:16:15 +00:00
if msg == 'R' or time.time() - t > stock_time*60:
2021-05-27 19:10:57 +00:00
coins, coin_info, unique_bases = readCryptoCSV('csv/crypto.csv', max_stocks)
updateCrypto(coins, coin_info, unique_bases)
2021-06-09 18:06:21 +00:00
updateCurrencies(currency_key)
2021-05-27 19:10:57 +00:00
updateNews()
2021-06-02 20:16:15 +00:00
updateWeather(weather_location, weather_key)
2021-06-14 19:36:17 +00:00
updateSports()
2021-05-27 19:10:57 +00:00
NY_time = datetime.now(NY_zone)
symbols, stock_info = readCSV('csv/tickers.csv', max_stocks)
if opening < NY_time < closing and datetime.today().weekday() < 5: # we need to do real time updating
print('market open')
2021-05-14 12:02:22 +00:00
2021-05-27 19:10:57 +00:00
updateStockPrices(symbols)
updateUpdate(NY_time)
elif emptyInfo(symbols, stock_info): # if theres any empty stocks
updateStockPrices(symbols)
updateUpdate(NY_time)
2021-05-08 11:10:05 +00:00
2021-05-27 19:10:57 +00:00
else:
# update if last update was before the previous days closing
f = open('csv/last_update.csv', 'r')
CSV = csv.reader(f)
last_update_str = next(CSV)[0]
last_update = datetime.strptime(last_update_str, "%d/%m/%Y %H:%M:%S")
yday_closing = closing - dt.timedelta(days=1)
yday_str = yday_closing.strftime("%d/%m/%Y %H:%M:%S")
yday_closing = datetime.strptime(yday_str, "%d/%m/%Y %H:%M:%S")
2021-05-05 19:26:56 +00:00
2021-05-27 19:10:57 +00:00
if last_update < yday_closing:
updateStockPrices(symbols)
updateUpdate(NY_time)
t = time.time()
except Exception as e:
logf.write(srt(e))
2021-05-05 19:26:56 +00:00
2021-05-27 19:10:57 +00:00